全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
14021 101
2015-01-04
悬赏 1 个论坛币 已解决


Statistics, Data Mining, and Machine Learning in Astronomy:


  • A Practical Python Guide for the Analysis of Survey Data
  • Zeljko Ivezic (Author), Andrew J. Connolly (Author), Jacob T VanderPlas (Author), Alexander Gray (Author)
  • http://www.astroml.org/book_figures/index.html
  • http://press.princeton.edu/titles/10159.html
  • https://bbs.pinggu.org/forum.php?mod=viewthread&tid=4577247&page=1&extra=#pid35956137


As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers.



Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest.

  • Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets
  • Features real-world data sets from contemporary astronomical surveys
  • Uses a freely available Python codebase throughout
  • Ideal for students and working astronomers



Product Details
  • Hardcover: 552 pages
  • Publisher: Princeton University Press (Jan. 12 2014)
  • Language: English
  • ISBN-10: 0691151687
  • ISBN-13: 978-0691151687
  • Product Dimensions: 4.4 x 17.8 x 25.4 cm
  • Shipping Weight: 1.1 Kg






最佳答案

tigerwolf 查看完整内容

文件大,传了半天才成功, 就请大家别嫌贵了。币少的网友可以在这里做任务, 5分钟可以获得 500 币 https://bbs.pinggu.org/thread-3516650-1-1.html **** 本内容被作者隐藏 ****
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-1-4 22:11:47
文件大,传了半天才成功, 就请大家别嫌贵了。币少的网友可以在这里做任务, 5分钟可以获得 500 币

https://bbs.pinggu.org/thread-3516650-1-1.html



本帖隐藏的内容



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-1-4 22:44:14
突然发现我有这本书,等一下哦,我上传
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-1-4 23:37:44
文件太大,上传不了,要不我私信给你
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-1-5 03:01:00
Statistics, Data Mining, and Machine Learning in Astronomy_A Practical Python Guide for the Analysis of Survey Data_Zeljko Ivezic
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-1-5 03:30:46
good  book  and  need  to  see  it!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群