全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 量化投资
3702 34
2017-02-21
b16d8f64f176.png
Princeton University Press | 2014 | ISBN 978-0-691-15168-7 | 559 pages | PDF | 104 Mb

Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy)
As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers.
Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest.
  • Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets
  • Features real-world data sets from contemporary astronomical surveys
  • Uses a freely available Python codebase throughout
  • Ideal for students and working astronomers

Table of Contents
Part I Introduction
1 About the Book and Supporting Material
2 Fast Computation on Massive Data Sets
Part II Statistical Frameworks and Exploratory Data Analysis
3 Probability and Statistical Distributions
4 Classical Statistical Inference
5 Bayesian Statistical Inference
Part III Data Mining and Machine Learning
6 Searching for Structure in Point Data
7 Dimensionality and Its Reduction
8 Regression and Model Fitting
9 Classification
10 Time Series Analysis
Part IV Appendices
A An Introduction to Scientific Computing with Python
B AstroML:Machine Learning for Astronomy
C Astronomical Flux Measurements andMagnitudes
D SQL Query for Downloading SDSS Data
E Approximating the Fourier Transform with the FFT

                                                                       
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-2-21 10:17:03
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-21 10:21:02
这个有点意思
跨度够大
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-21 10:22:07
好书,学习了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-21 10:26:12
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-2-21 10:37:44
see,..............
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群