全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 winbugs及其他软件专版
1522 2
2015-02-07
悬赏 100 个论坛币 未解决

Data Mining with IBM SPSS Modeler (IBM SPSS Clementine)


Cesar Perez



his book presents the most common techniques used in data mining in a simple and easy to understand through one of the most common software solutions from among those existing in the market, in particular, IBM SPSS CLEMENTINE whose current name is IBM SPSS MODELER. Pursued as initial aim clarifying the applications concerning methods traditionally rated as difficult or dull. It seeks to present applications in data mining without having to manage high mathematical developments or complicated theoretical algorithms, which is the most common reason for the difficulties in understanding and implementation of this matter. Today data mining is used in different fields of science. Noteworthy applications in banking, and financial analysis of markets and trade, insurance and private health, in education, in industrial processes, in medicine, biology and bioengineering, telecommunications and in many other areas. Essentials to get started in data mining, regardless of the field in which it is applied, is the understanding of own concepts, task that does not require nor much less the domain of scientific apparatus involved in the matter. Later, when either necessary operative advanced, computer programs allow the results without having to decipher the mathematical development of the algorithms that are under the procedures. This book describes the simplest possible data mining concepts, so that they are understandable by readers with different training. The chapters begin describing the techniques in affordable language and then presenting the way to treat them through practical applications. An important part of each chapter are case studies completely resolved, including the interpretation of the results, which is precisely the most important thing in any matter with which they work. The book begins with an introduction to mining data and its phases. In successive chapters develop the initial phases (selection of information, data exploration, data cleansing, transformation of data, etc.). Subsequently elaborates on specific data mining, both predictive and descriptive techniques. Predictive techniques covers all models of regression, discriminant analysis, decision trees, neural networks and other techniques based on models. The descriptive techniques vary dimension reduction techniques, techniques of classification and segmentation (clustering), and exploratory data analysis techniques.
Product Details
  • Paperback: 242 pages
  • Publisher: Createspace (June 14 2013)
  • Language: English
  • ISBN-10: 1490440690
  • ISBN-13: 978-1490440699


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-2-8 11:16:47
提示: 作者被禁止或删除 内容自动屏蔽
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-2-8 17:12:47
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群