全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 藏经阁
2574 26
2015-04-30
【2009】Essentials of Topology with Applications
Essentials
Book 图书名称:Essentials of Topology with Applications
Author 作者:Steven G. Krantz
Publisher 出版社:Taylor & Francis Group/CRC
Page 页数:404
Publishing Date 出版时间:Jul 28, 2009                        
Language 语言:English
Size 大小:3 MB
Format 格式:pdf 文字版   
ISBN: 1420089749, 9781420089745, 9781420089752
Edition: 第1版  搜索过论坛,没有该文档


Features

Imparts a clear, solid understanding of modern topology
Presents a thorough treatment of algebraic topology
Contains material on graph theory and dynamical systems, both of which are insightful applications of topological ideas
Offers numerous examples, illustrations, and exercises to make learning the topic easier
Includes several appendices that supply background information on logic, real variable theory, set theory, and algebraic structures

Brings Readers Up to Speed in This Important and Rapidly Growing Area

Supported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological space, open and closed sets, separation axioms, and more, along with applications of the ideas in Morse, manifold, homotopy, and homology theories.

After discussing the key ideas of topology, the author examines the more advanced topics of algebraic topology and manifold theory. He also explores meaningful applications in a number of areas, including the traveling salesman problem, digital imaging, mathematical economics, and dynamical systems. The appendices offer background material on logic, set theory, the properties of real numbers, the axiom of choice, and basic algebraic structures.

Taking a fresh and accessible approach to a venerable subject, this text provides excellent representations of topological ideas. It forms the foundation for further mathematical study in real analysis, abstract algebra, and beyond.


== Table of contents ==
Preface

Chapter 1: Fundamentals
1.1 What Is Topology?
1.2 First Definitions
1.3 Mappings
1.4 The Separation Axioms
1.5 Compactness
1.6 Homeomorphisms
1.7 Connectedness
1.8 Path-Connectedness
1.9 Continua
1.10 Totally Disconnected Spaces
1.11 The Cantor Set
1.12 Metric Spaces
1.13 Metrizability
1.14 Baire’s Theorem
1.15 Lebesgue’s Lemma and Lebesgue Numbers
Exercises

Chapter 2: Advanced Properties of Topological Spaces
2.1 Basis and Sub-Basis
2.2 Product Spaces
2.3 Relative Topology
2.4 First Countable, Second Countable, and So Forth
2.5 Compactifications
2.6 Quotient Topologies
2.7 Uniformities
2.8 Morse Theory
2.9 Proper Mappings
2.10 Paracompactness
2.11 An Application to Digital Imaging
Exercises

Chapter 3: Basic Algebraic Topology
3.1 Homotopy Theory
3.2 Homology Theory
3.2.1 Fundamentals
3.2.2 Singular Homology
3.2.3 Relation to Homotopy
3.3 Covering Spaces
3.4 The Concept of Index
3.5 Mathematical Economics
Exercises

Chapter 4: Manifold Theory
4.1 Basic Concepts
4.2 The Definition
Exercises

Chapter 5: Moore-Smith Convergence and Nets
5.1 Introductory Remarks
5.2 Nets
Exercises

Chapter 6: Function Spaces
6.1 Preliminary Ideas
6.2 The Topology of Pointwise Convergence
6.3 The Compact-Open Topology
6.4 Uniform Convergence
6.5 Equicontinuity and the Ascoli-Arzela Theorem
6.6 TheWeierstrass Approximation Theorem
Exercises

Chapter 7: Knot Theory
7.1 What Is a Knot?
7.2 The Alexander Polynomial
7.3 The Jones Polynomial
7.3.1 Knot Projections
7.3.2 Reidemeister Moves
7.3.3 Bracket Polynomials
7.3.4 Creation of a New Polynomial Invariant
Exercises

Chapter 8: Graph Theory
8.1 Introduction
8.2 Fundamental Ideas of Graph Theory
8.3 Application to the K¨onigsberg Bridge Problem
8.4 Coloring Problems
8.4.1 Modern Developments
8.4.2 Denouement
8.5 The Traveling Salesman Problem
Exercises

Chapter 9: Dynamical Systems
9.1 Flows
9.1.1 Dynamical Systems
9.1.2 Stable and Unstable Fixed Points
9.1.3 Linear Dynamics in the Plane
9.2 Planar Autonomous Systems
9.2.1 Ingredients of the Proof of Poincar´e-Bendixson
9.3 Lagrange’s Equations
Exercises
Appendices
Appendix 1: Principles of Logic
A1.1 Truth
A1.2 “And” and “Or”
A1.3 “Not”
A1.4 “If-Then”
A1.5 Contrapositive, Converse, and “Iff”
A1.6 Quantifiers
A1.7 Truth and Provability
Appendix 2: Principles of Set Theory
A2.1 Undefinable Terms
A2.2 Elements of Set Theory
A2.3 Venn Diagrams
A2.4 Further Ideas in Elementary Set Theory
A2.5 Indexing and Extended Set Operations
A2.6 Countable and Uncountable Sets
Appendix 3: The Real Numbers
A3.1 The Real Number System
A3.2 Construction of the Real Numbers
Appendix 4: The Axiom of Choice and Its Implications
A4.1 Well Ordering
A4.2 The Continuum Hypothesis
A4.3 Zorn’s Lemma
A4.4 The Hausdorff Maximality Principle
A4.5 The Banach-Tarski Paradox
Appendix 5: Ideas from Algebra
A5.1 Groups
A5.2 Rings
A5.3 Fields
A5.4 Modules
A5.5 Vector Spaces
olutions of Selected Exercises
Bibliography
Index
Back Cover


== 回帖见免费下载 ==

本帖隐藏的内容



声明: 本资源仅供学术研究参考之用,发布者不负任何法律责任,敬请下载者支持购买正版。
提倡免费分享! 我发全部免费的,分文不收 来看看 ...
你也可关注我  马上加关注



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-4-30 05:01:24
Essentials of Topology with Applications a textbooks in Mathematics!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-4-30 05:05:25
thanks for sharing great book
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-4-30 05:13:33
【独家发布】【2009】Essentials of Topology with Applications
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-4-30 05:23:58
提示: 作者被禁止或删除 内容自动屏蔽
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-4-30 07:20:37
{:3_42:}
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群