“圣彼得堡悖论”来自于一种掷币游戏,即圣彼得堡游戏。设定掷币掷出正面为成功,游戏者如果第一次投掷成功,得奖金2元,游戏结束;第一次若不成功,继续投掷,第二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。如果第n次投掷成功,得奖金2n元,游戏结束。
按照概率期望值的计算方法,此游戏的期望收益为所有可能结果的得奖期望值之和:
由于对于游戏中投币的次数没有理论上的限制,很显然,上式是无数个1的和,它等于无穷大,即该抽奖活动收益的数学期望值是无限的。那么对于这样一个收益的数学期望值是无穷大的“圣彼得堡游戏”当支付多大的费用呢?试验表明,大多数人只准备支付几元钱来参加这一游戏。于是,个人参与这种游戏所愿支付的有限价格与其收益的无穷数学期望之间的矛盾就构成了所谓的“圣彼得堡悖论”。