全部版块 我的主页
论坛 经济学论坛 三区 微观经济学
2924 3
2015-06-17
Preface to the Fourth Edition
The fourth edition of this book on Applied Multivariate Statistical Analysis offers
a new sub-chapter on Variable Selection by using least absolute shrinkage and
selection operator (LASSO) and its general form the so-called Elastic Net.
All pictures and numerical examples have been now calculated in the (almost)
standard language R & MATLAB. The code for each picture is indicated with
a small sign near the picture, e.g. MVAdenbank denotes the corresponding
quantlet for reproduction of Fig.1.9, where we display the densities of the diagonal
of genuine and counterfeit bank notes. We believe that these publicly available
quantlets (see also http://sfb649.wiwi.hu-berlin.de/quantnet/) create a valuable
contribution to distribution of knowledge in the statistical science. The symbols and
notations have also been standardised. In the preparation of the fourth edition, we
received valuable input from Dedy Dwi Prastyo, Petra Burdejova, Sergey Nasekin
and Awdesch Melzer. We would like to thank them.
Berlin, Germany Wolfgang Karl Härdle
Louvain la Neuve, Belgium Léopold Simar


Part I Descriptive Techniques
1 Comparison of Batches .................................................... 3
1.1 Boxplots............................................................. 4
1.2 Histograms.......................................................... 11
1.3 Kernel Densities .................................................... 15
1.4 Scatterplots.......................................................... 19
1.5 Chernoff-Flury Faces............................................... 22
1.6 Andrews’ Curves.................................................... 29
1.7 Parallel Coordinates Plots .......................................... 32
1.8 Hexagon Plots....................................................... 37
1.9 Boston Housing ..................................................... 40
1.10 Exercises ............................................................ 48
Part II Multivariate Random Variables
2 A Short Excursion into Matrix Algebra ................................. 53
2.1 Elementary Operations ............................................. 53
2.2 Spectral Decompositions........................................... 60
2.3 Quadratic Forms .................................................... 62
2.4 Derivatives .......................................................... 65
2.5 Partitioned Matrices ................................................ 66
2.6 Geometrical Aspects................................................ 68
2.7 Exercises ............................................................ 76
3 Moving to Higher Dimensions............................................. 79
3.1 Covariance .......................................................... 80
3.2 Correlation .......................................................... 84
3.3 Summary Statistics ................................................. 89
3.4 Linear Model for Two Variables ................................... 93
3.5 Simple Analysis of Variance ....................................... 100
ixx Contents
3.6 Multiple Linear Model.............................................. 105
3.7 Boston Housing ..................................................... 110
3.8 Exercises ............................................................ 113
4 Multivariate Distributions................................................. 117
4.1 Distribution and Density Function ................................. 118
4.2 Moments and Characteristic Functions............................ 123
4.3 Transformations..................................................... 135
4.4 The Multinormal Distribution ...................................... 137
4.5 Sampling Distributions and Limit Theorems...................... 142
4.6 Heavy-Tailed Distributions......................................... 149
4.7 Copulae.............................................................. 166
4.8 Bootstrap ............................................................ 176
4.9 Exercises ............................................................ 179
5 Theory of the Multinormal ................................................ 183
5.1 Elementary Properties of the Multinormal......................... 183
5.2 The Wishart Distribution ........................................... 191
5.3 Hotelling’s T
2
-Distribution ........................................ 193
5.4 Spherical and Elliptical Distributions.............................. 195
5.5 Exercises ............................................................ 197
6 Theory of Estimation....................................................... 201
6.1 The Likelihood Function ........................................... 202
6.2 The Cramer–Rao Lower Bound .................................... 206
6.3 Exercises ............................................................ 210
7 Hypothesis Testing.......................................................... 213
7.1 Likelihood Ratio Test............................................... 214
7.2 Linear Hypothesis................................................... 224
7.3 Boston Housing ..................................................... 242
7.4 Exercises ............................................................ 246
Part III Multivariate Techniques
8 Regression Models.......................................................... 253
8.1 General ANOVA and ANCOVA Models .......................... 255
8.1.1 ANOVA Models............................................ 255
8.1.2 ANCOVA Models .......................................... 260
8.1.3 Boston Housing............................................. 262
8.2 Categorical Responses.............................................. 263
8.2.1 Multinomial Sampling and Contingency Tables.......... 263
8.2.2 Log-Linear Models for Contingency Tables .............. 264
8.2.3 Testing Issues with Count Data ............................ 268
8.2.4 Logit Models................................................ 271
8.3 Exercises ............................................................ 279Contents xi
9 Variable Selection .......................................................... 281
9.1 Lasso................................................................. 282
9.1.1 Lasso in the Linear Regression Model .................... 282
9.1.2 Lasso in High Dimensions ................................. 292
9.1.3 Lasso in Logit Model....................................... 293
9.2 Elastic Net........................................................... 297
9.2.1 Elastic Net in Linear Regression Model................... 298
9.2.2 Elastic Net in Logit Model ................................. 299
9.3 Group Lasso......................................................... 300
9.4 Exercises ............................................................ 304
10 Decomposition of Data Matrices by Factors ............................ 305
10.1 The Geometric Point of View ...................................... 306
10.2 Fitting the p-Dimensional Point Cloud ............................ 307
10.3 Fitting the n-Dimensional Point Cloud ............................ 310
10.4 Relations Between Subspaces...................................... 312
10.5 Practical Computation .............................................. 314
10.6 Exercises ............................................................ 317
11 Principal Components Analysis .......................................... 319
11.1 Standardised Linear Combination.................................. 320
11.2 Principal Components in Practice .................................. 324
11.3 Interpretation of the PCs............................................ 327
11.4 Asymptotic Properties of the PCs.................................. 331
11.5 Normalised Principal Components Analysis ...................... 335
11.6 Principal Components as a Factorial Method...................... 336
11.7 Common Principal Components ................................... 342
11.8 Boston Housing ..................................................... 346
11.9 More Examples ..................................................... 348
11.10 Exercises ............................................................ 357
12 Factor Analysis ............................................................. 359
12.1 The Orthogonal Factor Model...................................... 360
12.2 Estimation of the Factor Model .................................... 367
12.3 Factor Scores and Strategies........................................ 376
12.4 Boston Housing ..................................................... 378
12.5 Exercises ............................................................ 382
13 Cluster Analysis ............................................................ 385
13.1 The Problem......................................................... 386
13.2 The Proximity Between Objects ................................... 387
13.3 Cluster Algorithms.................................................. 392
13.4 Boston Housing ..................................................... 400
13.5 Exercises ............................................................ 404xii Contents
14 Discriminant Analysis ..................................................... 407
14.1 Allocation Rules for Known Distributions ........................ 407
14.2 Discrimination Rules in Practice ................................... 415
14.3 Boston Housing ..................................................... 421
14.4 Exercises ............................................................ 423
15 Correspondence Analysis ................................................. 425
15.1 Motivation........................................................... 426
15.2 Chi-Square Decomposition......................................... 428
15.3 Correspondence Analysis in Practice .............................. 432
15.4 Exercises ............................................................ 441
16 Canonical Correlation Analysis........................................... 443
16.1 Most Interesting Linear Combination.............................. 443
16.2 Canonical Correlation in Practice .................................. 448
16.3 Exercises ............................................................ 454
17 Multidimensional Scaling ................................................. 455
17.1 The Problem......................................................... 455
17.2 Metric MDS......................................................... 460
17.3 Nonmetric MDS .................................................... 465
17.4 Exercises ............................................................ 472
18 Conjoint Measurement Analysis.......................................... 473
18.1 Introduction ......................................................... 473
18.2 Design of Data Generation ......................................... 475
18.3 Estimation of Preference Orderings................................ 478
18.4 Exercises ............................................................ 485
19 Applications in Finance .................................................... 487
19.1 Portfolio Choice..................................................... 487
19.2 Efficient Portfolio ................................................... 488
19.3 Efficient Portfolios in Practice ..................................... 496
19.4 The Capital Asset Pricing Model................................... 497
19.5 Exercises ............................................................ 499
20 Computationally Intensive Techniques. .................................. 501
20.1 Simplicial Depth .................................................... 502
20.2 Projection Pursuit ................................................... 505
20.3 Sliced Inverse Regression .......................................... 511
20.4 Support Vector Machines........................................... 519
20.5 Classification and Regression Trees ............................... 534
20.6 Boston Housing ..................................................... 552
20.7 Exercises ............................................................ 554Contents xiii
Part IV Appendix
21 Symbols and Notations..................................................... 557
22 Data .......................................................................... 561
22.1 Boston Housing Data ............................................... 561
22.2 Swiss Bank Notes................................................... 562
22.3 Car Data ............................................................. 562
22.4 Classic Blue Pullovers Data ........................................ 563
22.5 US Companies Data ................................................ 563
22.6 French Food Data ................................................... 563
22.7 Car Marks ........................................................... 564
22.8 French Baccalauréat Frequencies .................................. 564
22.9 Journaux Data ....................................................... 564
22.10 US Crime Data ...................................................... 565
22.11 Plasma Data ......................................................... 566
22.12 WAIS Data .......................................................... 566
22.13 ANOVA Data........................................................ 567
22.14 Timebudget Data .................................................... 567
22.15 Geopol Data ......................................................... 568
22.16 US Health Data ..................................................... 569
22.17 Vocabulary Data..................................................... 570
22.18 Athletic Records Data .............................................. 570
22.19 Unemployment Data ................................................ 570
22.20 Annual Population Data ............................................ 570
22.21 Bankruptcy Data I................................................... 571
22.22 Bankruptcy Data II.................................................. 571
References......................................................................... 573
Index............................................................................... 577

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-6-22 10:04:14
楼主,有电子版的书吗,能否传一份,实在感谢,我给你站内发消息了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-7-2 11:15:18
楼主,有电子版的书吗,能否传一份,实在感谢,我给你站内发消息了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-9-30 17:17:00
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群