全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 经管代码库
匿名
142370 57
2015-07-18

主成分分析在STATA中的实现以及理论介绍

转自 http://wenku.baidu.com/view/c90a10816529647d27285208.html?re=view


        主成分分分析也称作主分量分析,是霍特林(Hotelling)在1933年首先提出。主成分分析是利用降维的思想,在损失较少信息的前提下把多个指标转化为较少的综合指标。转化生成的综合指标即称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分互不相关。Stata对主成分分析的主要内容包括:主成分估计、主成分分析的恰当性(包括负偏协方差矩阵和负偏相关系数矩阵、KMO(Kaiser-Meyer-Olkin)抽样充分性、复相关系数、共同度等指标测度)、主成分的旋转、预测、各种检验、碎石图、得分图、载荷图等。

公式1.JPG

主成分的模型表达式为:

公式2.JPG

        其中,a称为得分,b称为载荷。主成分分析主要的分析方法是对相关系数矩阵(或协方差矩阵)进行特征值分析。

Stata中可以通过负偏相关系数矩阵、负相关系数平方和KMO值对主成分分析的恰当性进行分析。负偏相关系数矩阵即变量之间两两偏相关系数的负数。非对角线元素则为负的偏相关系数。如果变量之间存在较强的共性,则偏相关系数比较低。因此,如果矩阵中偏相关系数较高的个数比较多,说明某一些变量与另外一些变量的相关性比较低,主成分模型可能不适用。这时,主成分分析不能得到很好的数据约化效果。

         Kaiser-Meyer-Olkin抽样充分性测度也是用于测量变量之间相关关系的强弱的重要指标,是通过比较两个变量的相关系数与偏相关系数得到的。KMO介于0于1之间。KMO越高,表明变量的共性越强。如果偏相关系数相对于相关系数比较高,则KMO比较低,主成分分析不能起到很好的数据约化效果。根据Kaiser(1974),一般的判断标准如下:0.00-0.49,不能接受(unacceptable);0.50-0.59,非常差(miserable);0.60-0.69,勉强接受(mediocre);0.70-0.79,可以接受(middling);0.80-0.89,比较好(meritorious);0.90-1.00,非常好(marvelous)。

SMC即一个变量与其他所有变量的复相关系数的平方,也就是复回归方程的可决系数。SMC比较高表明变量的线性关系越强,共性越强,主成分分析就越合适。

成分载荷、KMO、SMC等指标都可以通过extat命令进行分析。

多元方差分析是方差分析在多元中的扩展,即模型含有多个响应变量。本章介绍多元(协)方差分析以及霍特林(Hotelling)均值向量T检验。

1 主成分估计

Stata可以通过变量进行主成分分析,也可以直接通过相关系数矩阵或协方差矩阵进行。

1

复制代码

2

复制代码

2 Estat

estat给出了几个非常有用的工具,包括KMO、SMC等指标。

复制代码

3 预测

Stata可以通过predict预测变量得分、拟合值和残差等。

复制代码

备注:q代表残差的平方和)

4 碎石图

碎石图是判断保留多少个主成分的重要方法。命令为screeplot。

复制代码

5 得分图、载荷图

得分图即不同主成分得分的散点图。命令为scoreplot。

复制代码

载荷图即不同主成分载荷的散点图。命令为loadingplot。

复制代码

6 旋转

对载荷进行旋转的命令格式为rotate。

复制代码

数据1.JPG

数据2.JPG


程序

复制代码

分析:

先对数据进行标准化处理后,接着进行主成分分析,可以得到:

表1-2.JPG

表1-1.JPG

从表中看到,前3个特征值累计贡献率已达90.27%,说明前3个主成分基本包含了全部指标具有的信息,我们取前3个特征值。通过对载荷矩阵进行旋转,可得到,相应的特征向量,见下表:

表2.PNG

表2-2.JPG

在第一主成分的表达式中第一、第三、第八项指标的系数较大,这三项指标起主要作用,我们可以把第一主成分看成是由国内生产总值、固定资产投资、工业总产值所刻划的反映经济社会总量的综合指标;

在第二主成分中,第二、第三、第四项指标的影响大,且第二、第四项的影响较大,因此可以把第二主成分看成是由居民消费水平、职工平均工资表示的反映人民生活水平的综合指标;

在第三主成分中,第六、第七项指标大于其余的指标,可看成是受居民消费价格指数、商品零售价格指数的影响,反映物价水平的综合指标。


在这次的主成分分析里面,我们可以进行些检验以验证我们分析的效果,通过KMO检验和SMC检验,得到了下面的检验值:


3-1.JPG

3-2.JPG

       Kaiser-Meyer-Olkin抽样充分性测度也是用于测量变量之间相关关系的强弱的重要指标,是通过比较两个变量的相关系数与偏相关系数得到的。KMO介于0于1之间。KMO越高,表明变量的共性越强。如果偏相关系数相对于相关系数比较高,则KMO比较低,主成分分析不能起到很好的数据约化效果。根据Kaiser(1974),一般的判断标准如下:0.00-0.49,不能接受(unacceptable);0.50-0.59,非常差(miserable);0.60-0.69,勉强接受(mediocre);0.70-0.79,可以接受(middling);0.80-0.89,比较好(meritorious);0.90-1.00,非常好(marvelous)。

SMC即一个变量与其他所有变量的复相关系数的平方,也就是复回归方程的可决系数。SMC比较高表明变量的线性关系越强,共性越强,主成分分析就越合适。

根据KMO越高,表明变量的共性越强和SMC比较高表明变量的线性关系越强,共性越强,主成分分析就越合适。从上表可以看出,在该例中,各变量基本符合要求。


通过碎石图,我们可以很直观的看出各个特征值的大小。在该图中,特征值等于1处的水平线标示了保留主成分分析的分界点,同时再次强调了本例中的成分4到8并不重要。

碎石图

碎石图.png



通过predict我们可以得出各个观察变量的所对应的各个主成分的线性组合(即得分)。

在得分图里,我们可以看到不同地区在第一、第二主成分里各自的得分情况。

得分图


得分图.jpg


得分2.jpg



通过载荷图,我们可以直观看出各个变量对主成分影响的大小。



载荷图

载荷.jpg


载荷2.jpg





运行rotate进行旋转后,我们将旋转后的结果和旋转前的结果进行比较,可以发现每一个观察变量独自构成一个主成分,方差贡献相等,都为12%。







二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-7-19 18:02:10
好贴,谢谢分享,再接再厉。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-10 21:38:36

想问问最后把得到的综合指标应用到多元回归中,在stata中具体要怎么操作呀?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-10 21:38:50

想问问最后把得到的综合指标应用到多元回归中,在stata中具体要怎么操作呀?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-11 06:59:25
yoga1 发表于 2016-11-10 21:38
想问问最后把得到的综合指标应用到多元回归中,在stata中具体要怎么操作呀?
因子分析本质上已是回归,如果有人口学指标,令其为虚拟变量。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-11 09:41:11
BlackHawk123 发表于 2016-11-11 06:59
因子分析本质上已是回归,如果有人口学指标,令其为虚拟变量。
比如说我想研究A和B对C的影响,但是B的指标有8个,然后我用主成分分析法降维后得到3个主成分。那最后再进行A和B对C的回归分析时要怎么做呀?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群