全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
1690 1
2008-11-06

书名:CALCULUS CALCU LUS I

作者:Paul Dawkins

文件格式:PDF

文件大小:2.86M

页数:574

资料类别:微积分

影印版

是否缺页:不缺

目录:Preface .......................................................................................................................................... iii
Outline .......................................................................................................................................... iv
Review............................................................................................................................................ 2 Introduction ............................................................................................................................................. 2 Review : Functions .................................................................................................................................. 4 Review : Inverse Functions .................................................................................................................... 14 Review : Trig Functions ......................................................................................................................... 21 Review : Solving Trig Equations ............................................................................................................ 28 Review : Solving Trig Equations with Calculators, Part I .................................................................... 37 Review : Solving Trig Equations with Calculators, Part II ................................................................... 48 Review : Exponential Functions ............................................................................................................ 53 Review : Logarithm Functions ............................................................................................................... 56 Review : Exponential and Logarithm Equations .................................................................................. 62 Review : Common Graphs ...................................................................................................................... 68
Limits ........................................................................................................................................... 80 Introduction ........................................................................................................................................... 80 Rates of Change and Tangent Lines ...................................................................................................... 82 The Limit ................................................................................................................................................ 91 One‐Sided Limits ..................................................................................................................................101 Limit Properties ....................................................................................................................................107 Computing Limits .................................................................................................................................113 Infinite Limits .......................................................................................................................................121 Limits At Infinity, Part I .........................................................................................................................130 Limits At Infinity, Part II .......................................................................................................................139 Continuity ..............................................................................................................................................148 The Definition of the Limit ....................................................................................................................155
Derivatives ................................................................................................................................. 170 Introduction ..........................................................................................................................................170 The Definition of the Derivative ...........................................................................................................172 Interpretations of the Derivative .........................................................................................................178 Differentiation Formulas ......................................................................................................................183 Product and Quotient Rule ...................................................................................................................191 Derivatives of Trig Functions ...............................................................................................................197 Derivatives of Exponential and Logarithm Functions ........................................................................208 Derivatives of Inverse Trig Functions ..................................................................................................213 Derivatives of Hyperbolic Functions ....................................................................................................219 Chain Rule .............................................................................................................................................221 Implicit Differentiation .........................................................................................................................231 Related Rates ........................................................................................................................................240 Higher Order Derivatives ......................................................................................................................254 Logarithmic Differentiation ..................................................................................................................259
Applications of Derivatives ....................................................................................................... 262 Introduction ..........................................................................................................................................262 Rates of Change.....................................................................................................................................264 Critical Points ........................................................................................................................................267 Minimum and Maximum Values ...........................................................................................................273 Finding Absolute Extrema ....................................................................................................................281 The Shape of a Graph, Part I ..................................................................................................................287 The Shape of a Graph, Part II ................................................................................................................296 The Mean Value Theorem .....................................................................................................................305 Optimization .........................................................................................................................................312 More Optimization Problems ...............................................................................................................326
Calculus I
© 2007 Paul Dawkins ii http://tutorial.math.lamar.edu/terms.aspx
Indeterminate Forms and L’Hospital’s Rule ........................................................................................341 Linear Approximations .........................................................................................................................347 Differentials ..........................................................................................................................................350 Newton’s Method ..................................................................................................................................353 Business Applications ...........................................................................................................................358
Integrals ..................................................................................................................................... 364 Introduction ..........................................................................................................................................364 Indefinite Integrals ...............................................................................................................................365 Computing Indefinite Integrals ............................................................................................................371 Substitution Rule for Indefinite Integrals ............................................................................................381 More Substitution Rule .........................................................................................................................394 Area Problem ........................................................................................................................................407 The Definition of the Definite Integral .................................................................................................417 Computing Definite Integrals ...............................................................................................................427 Substitution Rule for Definite Integrals ...............................................................................................439
Applications of Integrals ........................................................................................................... 450 Introduction ..........................................................................................................................................450 Average Function Value ........................................................................................................................451 Area Between Curves ............................................................................................................................454 Volumes of Solids of Revolution / Method of Rings ............................................................................465 Volumes of Solids of Revolution / Method of Cylinders .....................................................................475 More Volume Problems .........................................................................................................................483 Work ......................................................................................................................................................494
Extras ......................................................................................................................................... 498 Introduction ..........................................................................................................................................498 Proof of Various Limit Properties ........................................................................................................499 Proof of Various Derivative Facts/Formulas/Properties ...................................................................510 Proof of Trig Limits ...............................................................................................................................523 Proofs of Derivative Applications Facts/Formulas .............................................................................528 Proof of Various Integral Facts/Formulas/Properties .......................................................................539 Area and Volume Formulas ..................................................................................................................551 Types of Infinity ....................................................................................................................................555 Summation Notation .............................................................................................................................559 Constants of Integration .......................................................................................................................561

264190.pdf
大小:(2.87 MB)

只需: 50 个论坛币  马上下载


[此贴子已经被作者于2008-11-20 23:19:36编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-1-4 03:01:00
Thanks
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群