4.基本统计分析4.1正态性检验:univariate过程Proc univariate data= sasuser.stock normal; Var eps; Run; |
Proc univariate data= sasuser.stock normal; Var eps; Histogram eps; //画出直方图 Probplot eps; //画出概率分布图 Run; |
4.2单变量均值检验4.2.1如果一个变量服从正态分布,那么可以用t检验来对变量进行均值检验
Proc ttest data =数据集 ho = 均值; Var 检验变量; Run; |
4.2.2t检验还可以检验方差相同的两个独立样本均值是否相等
Proc ttest data =数据集; Class 分类变量; Var 检验变量; Run; 结果 第一部分简单统计量 第二部分t检验结果 第三部分两者方差是否相等检验 |
T检验要求两个独立样本都必须服从正态分布,如果不服从正态分布,则无法进行t检验。这时可用非参数的方法,常用的非参数方法是NPAR1WAY过程,它是 noparameter 1 way缩写。
4.3成对总体均值检验4.4回归分析:reg(回归)过程、rsreg(二次响应面回归)过程、orthoreg(病态数据回归)过程、nlin(非线性回归)过程、transreg(变换回归)过程、calis(线性结果方程和路径分析)过程、glm(一般线性回归)过程、genmod(广义线性回归)过程4.4.1 REG过程
Proc reg data = 输入数据集 选项; Var 变量列表; Model 因变量 = 自变量列表; Print 输出结果; Plot 诊断图形; Run; |
4.4.2 nlin过程指明模型的表达式并给定系数初值
4.4.3glm过程:使用最小二乘法回归线性模型,还可以进行回归,分差,协方差,多变量方差、偏相关系数分析4.5方差分析4.5.1单因素方差分析
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Run; |
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Means brand; Run; |
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Means brand/t; //t检验 Run; |
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Means brand/bon; //bonferroni t检验 控制第一类错误的概率,但是具有较大第二类错误概率 Run; |
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Means brand/regwq; //regwq检验 控制第一类错误的概率 Run; |
Proc anova data =数据集名称; Class 因素; Model 实验结果 =因素; Means brand/tukey; //tukey检验 控制第一类错误的概率,但是第二类错误概率通常高于regwq检验 Run; |
4.5.2多因素方差分析
4.5.3列联表检验
Proc freq data = 数据集; Tables 因素a*因素b / chisq; Weight 实验结果; Run; |
5相关知识因变量—Depender (Y)
自变量—Independent (X1 X2…)