全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 悬赏大厅 求助成功区
646 4
2015-10-20
悬赏 10 个论坛币 已解决
【作者(必填)】

【文题(必填)】

【年份(必填)】

【全文链接或数据库名称(选填)】A Bayesian Study of the Multinomial Distribution来自JSTOR收藏DA BlochGS Watson


摘要

Lindley [6] studies the topic in our title. By using Fisher's conditional-Poisson approach to the multinomial and the logarithmic transformation of gamma variables to normality, he showed that linear contrasts in the logarithms of the cell probabilities $\theta_i$ are asymptotically jointly normal and suggested that the approximation can be improved by applying a "correction" to the sample. By studying the asymptotic series for the joint distribution in Section 2 an improved correction procedure is found below. A more detailed expansion is given in Section 3 for the distribution of a single contrast in the $\log \theta_i$. In many problems a linear function of the $\theta_i$ is of interest. The exact distribution is obtained and is of a form familiar in the theory of serial correlation coefficients. A beta approximation is given. For three cells, a numerical example is given to show the merit of this approximation. A genetic linkage example is considered which requires the joint distribution of two linear functions of the $\theta_i$. The exact joint distribution is found but is too involved for practical use. A normal approximation leads to Lindley's results [7].

更多


出版源

《Annals of Mathematical Statistics》, 1967, 38(5):1423-1435


关键词

*STATISTICAL DISTRIBUTIONS / PROBABILITY / DISTRIBUTION THEORY.





二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-10-20 08:49:21
附件: 您需要登录才可以下载或查看附件。没有帐号?我要注册
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-10-20 09:04:26


The Bayesian Analysis of Contingency Tables
作者:DV Lindley
全文链接:Published by: Institute of Mathematical Statistics Stable URL: http://www.jstor.org/stable/2238298 Page Count: 22

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-10-20 09:14:43
giresse 发表于 2015-10-20 08:49
Thank you so much!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-10-20 09:15:12
breaker_5433 发表于 2015-10-20 09:14
Thank you so much!
u r welcome!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群