全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 LATEX论坛
970 2
2015-11-06
Likelihood Component Analysis. (arXiv:1511.01609v1 [stat.ME])
[/url][url=]






由 Benjamin B. Risk, David S. Matteson, David Ruppert[url=][/url] 通过 stat updates on arXiv.org[url=][/url]




Independent component analysis (ICA) is popular in many applications, including cognitive neuroscience and signal processing. Due to computational constraints, principal component analysis is used for dimension reduction prior to ICA (PCA+ICA), which could remove important information. The problem is that interesting independent components (ICs) could be mixed in several principal components that are discarded and then these ICs cannot be recovered. To address this issue, we propose likelihood component analysis (LCA), a novel methodology in which dimension reduction and latent variable estimation is achieved simultaneously by maximizing a likelihood with Gaussian and non-Gaussian components. We present a parametric LCA model using the logistic density and a semi-parametric LCA model using tilted Gaussians with cubic B-splines. We implement an algorithm scalable to datasets common in applications (e.g., hundreds of thousands of observations across hundreds of variables with dozens of latent components). In simulations, our methods recover latent components that are discarded by PCA+ICA methods. We apply our method to dependent multivariate data and demonstrate that LCA is a useful data visualization and dimension reduction tool that reveals features not apparent from PCA or PCA+ICA. We also apply our method to an experiment from the Human Connectome Project with state-of-the-art temporal and spatial resolution and identify an artifact using LCA that was missed by PCA+ICA. We present theoretical results on identifiability of the LCA model and consistency of our estimator.


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2015-11-6 18:52:20
谁有兴趣,一块来交流一下这篇paper
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-11-6 19:53:50
thanks for sharing
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群