Preface<br/>The subject of financial time series analysis has attracted substantial attention in<br/>recent years, especially with the 2003 Nobel awards to Professors Robert Engle and<br/>Clive Granger. At the same time, the field of financial econometrics has undergone<br/>various new developments, especially in high-frequency finance, stochastic volatility,<br/>and software availability. There is a need to make the material more complete<br/>and accessible for advanced undergraduate and graduate students, practitioners, and<br/>researchers. The main goals in preparing this second edition have been to bring the<br/>book up to date both in new developments and empirical analysis, and to enlarge<br/>the core material of the book by including consistent covariance estimation under<br/>heteroscedasticity and serial correlation, alternative approaches to volatility modeling,<br/>financial factor models, state-space models, Kalman filtering, and estimation<br/>of stochastic diffusion models.<br/>The book therefore has been extended to 10 chapters and substantially revised<br/>to include S-Plus commands and illustrations. Many empirical demonstrations and<br/>exercises are updated so that they include the most recent data.<br/>The two new chapters are Chapter 9, Principal Component Analysis and Factor<br/>Models, and Chapter 11, State-Space Models and Kalman Filter. The factor models<br/>discussed include macroeconomic, fundamental, and statistical factor models.<br/>They are simple and powerful tools for analyzing high-dimensional financial data<br/>such as portfolio returns. Empirical examples are used to demonstrate the applications.<br/>The state-space model and Kalman filter are added to demonstrate their<br/>applicability in finance and ease in computation. They are used in Chapter 12 to<br/>estimate stochastic volatility models under the general Markov chain Monte Carlo<br/>(MCMC) framework. The estimation also uses the technique of forward filtering<br/>and backward sampling to gain computational efficiency.<br/>A brief summary of the added material in the second edition is:<br/>1. To update the data used throughout the book.<br/>2. To provide S-Plus commands and demonstrations.<br/>3. To consider unit-root tests and methods for consistent estimation of the<br/>covariance matrix in the presence of conditional heteroscedasticity and serial<br/>correlation in Chapter 2.<br/>xvii<br/>xviii PREFACE<br/>4. To describe alternative approaches to volatility modeling, including use of<br/>high-frequency transactions data and daily high and low prices of an asset in<br/>Chapter 3.<br/>5. To give more applications of nonlinear models and methods in Chapter 4.<br/>6. To introduce additional concepts and applications of value at risk in Chapter 7.<br/>7. To discuss cointegrated vector AR models in Chapter 8.<br/>8. To cover various multivariate volatility models in Chapter 10.<br/>9. To add an effective MCMC method for estimating stochastic volatility models<br/>in Chapter 12.<br/>The revision benefits greatly from constructive comments of colleagues, friends,<br/>and many readers on the first edition. I am indebted to them all. In particular, I<br/>thank J. C. Artigas, Spencer Graves, Chung-Ming Kuan, Henry Lin, Daniel Pe?na,<br/>Jeff Russell, Michael Steele, George Tiao, Mark Wohar, Eric Zivot, and students<br/>of my MBA classes on financial time series for their comments and discussions,<br/>and Rosalyn Farkas, production editor, at John Wiley. I also thank my wife and<br/>children for their unconditional support and encouragement. Part of my research in<br/>financial econometrics is supported by the National Science Foundation, the High-<br/>Frequency Finance Project of the Institute of Economics, Academia Sinica, and the<br/>Graduate School of Business, University of Chicago.<br/>Finally, the website for the book is:<br/>gsbwww.uchicago.edu/fac/ruey.tsay/teaching/fts2.<br/>Ruey S. Tsay<br/><br/>Preface xvii<br/>Preface to First Edition xix<br/>1. Financial Time Series and Their Characteristics 1<br/>1.1 Asset Returns, 2<br/>1.2 Distributional Properties of Returns, 7<br/>1.2.1 Review of Statistical Distributions and Their Moments, 7<br/>1.2.2 Distributions of Returns, 13<br/>1.2.3 Multivariate Returns, 16<br/>1.2.4 Likelihood Function of Returns, 17<br/>1.2.5 Empirical Properties of Returns, 17<br/>1.3 Processes Considered, 20<br/>Exercises, 22<br/>References, 23<br/>2. Linear Time Series Analysis and Its Applications 24<br/>2.1 Stationarity, 25<br/>2.2 Correlation and Autocorrelation Function, 25<br/>2.3 White Noise and Linear Time Series, 31<br/>2.4 Simple Autoregressive Models, 32<br/>2.4.1 Properties of AR Models, 33<br/>2.4.2 Identifying AR Models in Practice, 40<br/>2.4.3 Goodness of Fit, 46<br/>2.4.4 Forecasting, 47<br/>vii<br/>viii CONTENTS<br/>2.5 Simple Moving-Average Models, 50<br/>2.5.1 Properties of MA Models, 51<br/>2.5.2 Identifying MA Order, 52<br/>2.5.3 Estimation, 53<br/>2.5.4 Forecasting Using MA Models, 54<br/>2.6 Simple ARMA Models, 56<br/>2.6.1 Properties of ARMA(1,1) Models, 57<br/>2.6.2 General ARMA Models, 58<br/>2.6.3 Identifying ARMA Models, 59<br/>2.6.4 Forecasting Using an ARMA Model, 61<br/>2.6.5 Three Model Representations for an ARMA Model, 62<br/>2.7 Unit-Root Nonstationarity, 64<br/>2.7.1 Random Walk, 64<br/>2.7.2 Random Walk with Drift, 65<br/>2.7.3 Trend-Stationary Time Series, 67<br/>2.7.4 General Unit-Root Nonstationary Models, 67<br/>2.7.5 Unit-Root Test, 68<br/>2.8 Seasonal Models, 72<br/>2.8.1 Seasonal Differencing, 73<br/>2.8.2 Multiplicative Seasonal Models, 75<br/>2.9 Regression Models with Time Series Errors, 80<br/>2.10 Consistent Covariance Matrix Estimation, 86<br/>2.11 Long-Memory Models, 89<br/>Appendix: Some SCA Commands, 91<br/>Exercises, 93<br/>References, 96<br/>3. Conditional Heteroscedastic Models 97<br/>3.1 Characteristics of Volatility, 98<br/>3.2 Structure of a Model, 99<br/>3.3 Model Building, 101<br/>3.3.1 Testing for ARCH Effect, 101<br/>3.4 The ARCH Model, 102<br/>3.4.1 Properties of ARCH Models, 104<br/>3.4.2 Weaknesses of ARCH Models, 106<br/>3.4.3 Building an ARCH Model, 106<br/>3.4.4 Some Examples, 109<br/>3.5 The GARCH Model, 113<br/>3.5.1 An Illustrative Example, 116<br/>CONTENTS ix<br/>3.5.2 Forecasting Evaluation, 121<br/>3.5.3 A Two-Pass Estimation Method, 121<br/>3.6 The Integrated GARCH Model, 122<br/>3.7 The GARCH-M Model, 123<br/>3.8 The Exponential GARCH Model, 124<br/>3.8.1 An Alternative Model Form, 125<br/>3.8.2 An Illustrative Example, 126<br/>3.8.3 Second Example, 126<br/>3.8.4 Forecasting Using an EGARCH Model, 128<br/>3.9 The Threshold GARCH Model, 130<br/>3.10 The CHARMA Model, 131<br/>3.10.1 Effects of Explanatory Variables, 133<br/>3.11 Random Coefficient Autoregressive Models, 133<br/>3.12 The Stochastic Volatility Model, 134<br/>3.13 The Long-Memory Stochastic Volatility Model, 134<br/>3.14 Application, 136<br/>3.15 Alternative Approaches, 140<br/>3.15.1 Use of High-Frequency Data, 140<br/>3.15.2 Use of Daily Open, High, Low, and Close Prices, 143<br/>3.16 Kurtosis of GARCH Models, 145<br/>Appendix: Some RATS Programs for Estimating Volatility Models, 147<br/>Exercises, 148<br/>References, 151<br/>4. Nonlinear Models and Their Applications 154<br/>4.1 Nonlinear Models, 156<br/>4.1.1 Bilinear Model, 156<br/>4.1.2 Threshold Autoregressive (TAR) Model, 157<br/>4.1.3 Smooth Transition AR (STAR) Model, 163<br/>4.1.4 Markov Switching Model, 164<br/>4.1.5 Nonparametric Methods, 167<br/>4.1.6 Functional Coefficient AR Model, 175<br/>4.1.7 Nonlinear Additive AR Model, 176<br/>4.1.8 Nonlinear State-Space Model, 176<br/>4.1.9 Neural Networks, 177<br/>4.2 Nonlinearity Tests, 183<br/>4.2.1 Nonparametric Tests, 183<br/>4.2.2 Parametric Tests, 186<br/>4.2.3 Applications, 190<br/>x CONTENTS<br/>4.3 Modeling, 191<br/>4.4 Forecasting, 192<br/>4.4.1 Parametric Bootstrap, 192<br/>4.4.2 Forecasting Evaluation, 192<br/>4.5 Application, 194<br/>Appendix A: Some RATS Programs for Nonlinear Volatility<br/>Models, 199<br/>Appendix B: S-Plus Commands for Neural Network, 200<br/>Exercises, 200<br/>References, 202<br/>5. High-Frequency Data Analysis and Market Microstructure 206<br/>5.1 Nonsynchronous Trading, 207<br/>5.2 Bid–Ask Spread, 210<br/>5.3 Empirical Characteristics of Transactions Data, 212<br/>5.4 Models for Price Changes, 218<br/>5.4.1 Ordered Probit Model, 218<br/>5.4.2 A Decomposition Model, 221<br/>5.5 Duration Models, 225<br/>5.5.1 The ACD Model, 227<br/>5.5.2 Simulation, 229<br/>5.5.3 Estimation, 232<br/>5.6 Nonlinear Duration Models, 236<br/>5.7 Bivariate Models for Price Change and Duration, 237<br/>Appendix A: Review of Some Probability Distributions, 242<br/>Appendix B: Hazard Function, 245<br/>Appendix C: Some RATS Programs for Duration Models, 246<br/>Exercises, 248<br/>References, 250<br/>6. Continuous-Time Models and Their Applications 251<br/>6.1 Options, 252<br/>6.2 Some Continuous-Time Stochastic Processes, 252<br/>6.2.1 The Wiener Process, 253<br/>6.2.2 Generalized Wiener Processes, 255<br/>6.2.3 Ito Processes, 256<br/>6.3 Ito’s Lemma, 256<br/>6.3.1 Review of Differentiation, 256<br/>6.3.2 Stochastic Differentiation, 257<br/>CONTENTS xi<br/>6.3.3 An Application, 258<br/>6.3.4 Estimation of μ and σ , 259<br/>6.4 Distributions of Stock Prices and Log Returns, 261<br/>6.5 Derivation of Black–Scholes Differential Equation, 262<br/>6.6 Black–Scholes Pricing Formulas, 264<br/>6.6.1 Risk-Neutral World, 264<br/>6.6.2 Formulas, 264<br/>6.6.3 Lower Bounds of European Options, 267<br/>6.6.4 Discussion, 268<br/>6.7 An Extension of Ito’s Lemma, 272<br/>6.8 Stochastic Integral, 273<br/>6.9 Jump Diffusion Models, 274<br/>6.9.1 Option Pricing Under Jump Diffusion, 279<br/>6.10 Estimation of Continuous-Time Models, 282<br/>Appendix A: Integration of Black–Scholes Formula, 282<br/>Appendix B: Approximation to Standard Normal<br/>Probability, 284<br/>Exercises, 284<br/>References, 285<br/>7. Extreme Values, Quantile Estimation, and Value at Risk 287<br/>7.1 Value at Risk, 287<br/>7.2 RiskMetrics, 290<br/>7.2.1 Discussion, 293<br/>7.2.2 Multiple Positions, 293<br/>7.3 An Econometric Approach to VaR Calculation, 294<br/>7.3.1 Multiple Periods, 296<br/>7.4 Quantile Estimation, 298<br/>7.4.1 Quantile and Order Statistics, 299<br/>7.4.2 Quantile Regression, 300<br/>7.5 Extreme Value Theory, 301<br/>7.5.1 Review of Extreme Value Theory, 301<br/>7.5.2 Empirical Estimation, 304<br/>7.5.3 Application to Stock Returns, 307<br/>7.6 Extreme Value Approach to VaR, 311<br/>7.6.1 Discussion, 314<br/>7.6.2 Multiperiod VaR, 316<br/>7.6.3 VaR for a Short Position, 316<br/>7.6.4 Return Level, 317<br/>xii CONTENTS<br/>7.7 A New Approach Based on the Extreme Value Theory, 318<br/>7.7.1 Statistical Theory, 318<br/>7.7.2 Mean Excess Function, 320<br/>7.7.3 A New Approach to Modeling Extreme Values, 322<br/>7.7.4 VaR Calculation Based on the New Approach, 324<br/>7.7.5 An Alternative Parameterization, 325<br/>7.7.6 Use of Explanatory Variables, 328<br/>7.7.7 Model Checking, 329<br/>7.7.8 An Illustration, 330<br/>Exercises, 335<br/>References, 337<br/>8. Multivariate Time Series Analysis and Its Applications 339<br/>8.1 Weak Stationarity and Cross-Correlation Matrices, 340<br/>8.1.1 Cross-Correlation Matrices, 340<br/>8.1.2 Linear Dependence, 341<br/>8.1.3 Sample Cross-Correlation Matrices, 342<br/>8.1.4 Multivariate Portmanteau Tests, 346<br/>8.2 Vector Autoregressive Models, 349<br/>8.2.1 Reduced and Structural Forms, 349<br/>8.2.2 Stationarity Condition and Moments of a VAR(1)<br/>Model, 351<br/>8.2.3 Vector AR(p) Models, 353<br/>8.2.4 Building a VAR(p) Model, 354<br/>8.2.5 Impulse Response Function, 362<br/>8.3 Vector Moving-Average Models, 365<br/>8.4 Vector ARMA Models, 371<br/>8.4.1 Marginal Models of Components, 375<br/>8.5 Unit-Root Nonstationarity and Cointegration, 376<br/>8.5.1 An Error-Correction Form, 379<br/>8.6 Cointegrated VAR Models, 380<br/>8.6.1 Specification of the Deterministic Function, 382<br/>8.6.2 Maximum Likelihood Estimation, 383<br/>8.6.3 A Cointegration Test, 384<br/>8.6.4 Forecasting of Cointegrated VAR Models, 385<br/>8.6.5 An Example, 385<br/>8.7 Threshold Cointegration and Arbitrage, 390<br/>8.7.1 Multivariate Threshold Model, 391<br/>8.7.2 The Data, 392<br/>CONTENTS xiii<br/>8.7.3 Estimation, 393<br/>Appendix A: Review of Vectors and Matrices, 395<br/>Appendix B: Multivariate Normal Distributions, 399<br/>Appendix C: Some SCA Commands, 400<br/>Exercises, 401<br/>References, 402<br/>9. Principal Component Analysis and Factor Models 405<br/>9.1 A Factor Model, 406<br/>9.2 Macroeconometric Factor Models, 407<br/>9.2.1 A Single-Factor Model, 408<br/>9.2.2 Multifactor Models, 412<br/>9.3 Fundamental Factor Models, 414<br/>9.3.1 BARRA Factor Model, 414<br/>9.3.2 Fama–French Approach, 420<br/>9.4 Principal Component Analysis, 421<br/>9.4.1 Theory of PCA, 421<br/>9.4.2 Empirical PCA, 422<br/>9.5 Statistical Factor Analysis, 426<br/>9.5.1 Estimation, 428<br/>9.5.2 Factor Rotation, 429<br/>9.5.3 Applications, 430<br/>9.6 Asymptotic Principal Component Analysis, 436<br/>9.6.1 Selecting the Number of Factors, 437<br/>9.6.2 An Example, 437<br/>Exercises, 440<br/>References, 441<br/>10. Multivariate Volatility Models and Their Applications 443<br/>10.1 Exponentially Weighted Estimate, 444<br/>10.2 Some Multivariate GARCH Models, 447<br/>10.2.1 Diagonal VEC Model, 447<br/>10.2.2 BEKK Model, 451<br/>10.3 Reparameterization, 454<br/>10.3.1 Use of Correlations, 454<br/>10.3.2 Cholesky Decomposition, 455<br/>10.4 GARCH Models for Bivariate Returns, 459<br/>10.4.1 Constant-Correlation Models, 459<br/>10.4.2 Time-Varying Correlation Models, 464<br/>xiv CONTENTS<br/>10.4.3 Some Recent Developments, 470<br/>10.5 Higher Dimensional Volatility Models, 471<br/>10.6 Factor–Volatility Models, 477<br/>10.7 Application, 480<br/>10.8 Multivariate t Distribution, 482<br/>Appendix: Some Remarks on Estimation, 483<br/>Exercises, 488<br/>References, 489<br/>11. State-Space Models and Kalman Filter 490<br/>11.1 Local Trend Model, 490<br/>11.1.1 Statistical Inference, 493<br/>11.1.2 Kalman Filter, 495<br/>11.1.3 Properties of Forecast Error, 496<br/>11.1.4 State Smoothing, 498<br/>11.1.5 Missing Values, 501<br/>11.1.6 Effect of Initialization, 503<br/>11.1.7 Estimation, 504<br/>11.1.8 S-Plus Commands Used, 505<br/>11.2 Linear State-Space Models, 508<br/>11.3 Model Transformation, 509<br/>11.3.1 CAPM with Time-Varying Coefficients, 510<br/>11.3.2 ARMA Models, 512<br/>11.3.3 Linear Regression Model, 518<br/>11.3.4 Linear Regression Models with ARMA Errors, 519<br/>11.3.5 Scalar Unobserved Component Model, 521<br/>11.4 Kalman Filter and Smoothing, 523<br/>11.4.1 Kalman Filter, 523<br/>11.4.2 State Estimation Error and Forecast Error, 525<br/>11.4.3 State Smoothing, 526<br/>11.4.4 Disturbance Smoothing, 528<br/>11.5 Missing Values, 531<br/>11.6 Forecasting, 532<br/>11.7 Application, 533<br/>Exercises, 540<br/>References, 541<br/>CONTENTS xv<br/>12. Markov Chain Monte Carlo Methods with Applications 543<br/>12.1 Markov Chain Simulation, 544<br/>12.2 Gibbs Sampling, 545<br/>12.3 Bayesian Inference, 547<br/>12.3.1 Posterior Distributions, 547<br/>12.3.2 Conjugate Prior Distributions, 548<br/>12.4 Alternative Algorithms, 551<br/>12.4.1 Metropolis Algorithm, 551<br/>12.4.2 Metropolis–Hasting Algorithm, 552<br/>12.4.3 Griddy Gibbs, 552<br/>12.5 Linear Regression with Time Series Errors, 553<br/>12.6 Missing Values and Outliers, 558<br/>12.6.1 Missing Values, 559<br/>12.6.2 Outlier Detection, 561<br/>12.7 Stochastic Volatility Models, 565<br/>12.7.1 Estimation of Univariate Models, 566<br/>12.7.2 Multivariate Stochastic Volatility Models, 571<br/>12.8 A New Approach to SV Estimation, 578<br/>12.9 Markov Switching Models, 588<br/>12.10 Forecasting, 594<br/>12.11 Other Applications, 597<br/>Exercises, 597<br/>References, 598<br/>Index 601
[此贴子已经被作者于2009-1-5 16:54:03编辑过]