全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 LATEX论坛
1039 1
2016-01-09
Robust Model Fitting Using Higher Than Minimal Subset Sampling1d
[/url][url=]






通过 Pattern Analysis and Machine Intelligence, IEEE Transactions on - new TOC[url=][/url]




Identifying the underlying model in a set of data contaminated by noise and outliers is a fundamental task in computer vision. The cost function associated with such tasks is often highly complex, hence in most cases only an approximate solution is obtained by evaluating the cost function on discrete locations in the parameter (hypothesis) space. To be successful at least one hypothesis has to be in the vicinity of the solution. Due to noise hypotheses generated by minimal subsets can be far from the underlying model, even when the samples are from the said structure. In this paper we investigate the feasibility of using higher than minimal subset sampling for hypothesis generation. Our empirical studies showed that increasing the sample size beyond minimal size ($p$ ), in particular up to $p+2$, will significantly increase the probability of generating a hypothesis closer to the true model when subsets are selected from inliers. On the other hand, the probability of selecting an all inlier sample rapidly decreases with the sample size, making direct extension of existing methods unfeasible. Hence, we propose a new computationally tractable method for robust model fitting that uses higher than minimal subsets. Here, one starts from an arbitrary hypothesis (which does not need to be in the vicinity of the solution) and moves until either a structure in data is found or the process is re-initialized. The method also has the ability to identify when the algorithm has reached a hypothesis with adequate accuracy and stops appropriately, thereby saving computational time. The experimental analysis carried out using synthetic and real data shows that the pr- posed method is both accurate and efficient compared to the state-of-the-art robust model fitting techniques.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-1-9 14:30:14
oliyiyi 发表于 2016-1-9 12:57
Robust Model Fitting Using Higher Than Minimal Subset Sampling1d
[/url]

谢谢楼主分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群