全部版块 我的主页
论坛 经管考试 九区 经管考证 金融类
4280 11
2009-02-21
<p>作者:lbert W. Marshall, Ingram Olkin </p><p>书名:“Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families" <br/>出版社:Springer | 2007-07-27 | ISBN: 0387203338 | 788 pages | PDF | 3,3 MB </p><p>内容简介:For over 200 years, practitioners have been developing parametric families of probability distributions for data analysis. More recently, an active development of nonparametric and semiparametric families has occurred. This book includes an extensive discussion of a wide variety of distribution families—nonparametric, semiparametric and parametric—some well known and some not. An all-encompassing view is taken for the purpose of identifying relationships, origins and structures of the various families. A unified methodological approach for the introduction of parameters into families is developed, and the properties that the parameters imbue a distribution are clarified. These results provide essential tools for intelligent choice of models for data analysis. Many of the results given are new and have not previously appeared in print. This book provides a comprehensive reference for anyone working with nonnegative data. </p><p>&nbsp;便宜点吧,设置6块对真正需要的来说也不算多。</p><p>
295714.rar
大小:(3.32 MB)

只需: 6 个论坛币  马上下载

本附件包括:

  • life_distrib.pdf

&nbsp;</p>

[此贴子已经被作者于2009-3-24 19:55:05编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-2-21 15:04:00
<p>我有这本书,还不错!给出目录:</p><p>Contents<br/>Preface ............................................................................ vii<br/>Acknowledgements............................................................ xi<br/>Basic Notation and Terminology ........................................ xix<br/>Part I. Basics<br/>1. Preliminaries............................................................... 3<br/>A. Introduction............................................................... 3<br/>B. Probabilistic Descriptions .............................................. 7<br/>C. Moments and Other Expectations.................................... 22<br/>D. Families of Distributions ............................................... 25<br/>E. Mixtures of Distributions: Introduction ............................. 26<br/>F. Parametric Families: Basic Examples................................ 28<br/>G. Nonparametric Families: Basic Examples........................... 30<br/>H. Functions of Random Variables....................................... 32<br/>I. Inverse Distributions: The Lorenz Curve and the<br/>Total Time on Test Transform ....................................... 35<br/>2. Ordering Distributions: Descriptive Statistics ................ 47<br/>A. Magnitude................................................................. 49<br/>B. Dispersion ................................................................. 61<br/>C. Shape....................................................................... 67<br/>D. Cone Orders............................................................... 76<br/>3. Mixtures..................................................................... 79<br/>A. Basic Ideas ................................................................ 80<br/>B. The Conditional Mixing Distribution................................ 83<br/>C. Limiting Hazard Rates.................................................. 86<br/>xiv Contents<br/>D. Hazard Transforms of Mixtures....................................... 88<br/>E. Mixtures and Minima................................................... 92<br/>F. Preservation of Orders Under Mixtures ............................. 94<br/>Part II. Nonparametric Families<br/>4. Nonparametric Families: Densities and<br/>Hazard Rates.............................................................. 97<br/>A. Introduction............................................................... 97<br/>B. Log-Concave and Log-Convex Densities............................. 98<br/>C. Monotone Hazard Rates................................................ 103<br/>D. Bathtub Hazard Rates.................................................. 120<br/>E. Determination of Hazard Rate Shape................................ 133<br/>5. Nonparametric Families: Origins in<br/>Reliability Theory ....................................................... 137<br/>A. Coherent Systems........................................................ 137<br/>B. Monotone Hazard Rate Averages..................................... 151<br/>C. New Better (Worse) Than Used Distributions..................... 161<br/>D. Decreasing Mean Residual Life Distributions ...................... 169<br/>E. New Better (Worse) Than Used in Expectation<br/>Distributions.............................................................. 173<br/>F. Additional Nonparametric Families of Distributions ............. 177<br/>G. Summary of Relationships and Closure Properties................ 180<br/>H. Shock Models ............................................................. 182<br/>I. Replacement Policies: Renewal Theory.............................. 187<br/>J. Some Additional Families.............................................. 192<br/>6. Nonparametric Families: Inequalities for Moments<br/>and Survival Functions................................................. 195<br/>A. Results Concerning Moments.......................................... 195<br/>B. Bounds for Survival Functions ........................................ 198<br/>Part III. Semiparametric Families<br/>7. Semiparametric Families .............................................. 217<br/>A. Introduction............................................................... 217<br/>B. Location Parameters .................................................... 220<br/>C. Scale Parameters......................................................... 224<br/>D. Power Parameters........................................................ 228<br/>Contents xv<br/>E. Frailty and Resilience Parameters: Proportional Hazards<br/>and Reverse Hazards.................................................... 232<br/>F. Tilt Parameters: Proportional Odds Ratios,<br/>Extreme Stable Families................................................ 242<br/>G. Hazard Power Parameters.............................................. 256<br/>H. Moment Parameters..................................................... 258<br/>I. Laplace Transform Parameters........................................ 260<br/>J. Convolution Parameters................................................ 261<br/>K. Age Parameters: Residual Life Families............................. 264<br/>L. Successive Additions of Parameters.................................. 265<br/>M. Mixing Semiparametric Families...................................... 267<br/>N. Summary of Order Properties......................................... 283<br/>O. Additional Semiparametric Families ................................. 284<br/>P. Distributions not Admitting Parameters............................ 285<br/>Part IV. Parametric Families<br/>8. The Exponential Distribution....................................... 291<br/>A. Defining Functions ...................................................... 292<br/>B. Characterizations of the Exponential Distribution................ 296<br/>C. Some Basic Properties of Exponential Distributions ............. 302<br/>9. Parametric Extensions of the Exponential<br/>Distribution................................................................ 309<br/>A. The Gamma Distribution.............................................. 310<br/>B. The Weibull Distribution .............................................. 321<br/>C. Exponential Distributions with a Resilience Parameter ......... 333<br/>D. Exponential Distributions with a Tilt Parameter................. 338<br/>E. Generalized Gamma (Gamma–Weibull) Distribution ............ 348<br/>F. Weibull Distribution with a Resilience Parameter................ 353<br/>G. Residual Life of the Weibull Distribution........................... 355<br/>H. Weibull Distribution with a Tilt Parameter ....................... 355<br/>I. Generalized Gamma Convolutions ................................... 359<br/>J. Summary of Distributions and Hazard Rates...................... 360<br/>10. Gompertz and Gompertz–Makeham Distributions.......... 363<br/>A. The Gompertz Distribution ........................................... 364<br/>B. The Extensions of Makeham .......................................... 375<br/>C. Further Extensions of the Gompertz Distribution ................ 390<br/>D. Summary of Distributions and Hazard Rates...................... 396<br/>xvi Contents<br/>11. Pareto and F Distributions and Their<br/>Parametric Extensions................................................. 399<br/>A. Introduction .............................................................. 399<br/>B. Pareto Distributions .................................................... 400<br/>C. Generalized F Distribution............................................ 411<br/>D. The F Distribution...................................................... 418<br/>E. Ordering Pareto and F Distributions................................ 423<br/>F. Another Generalization of the Pareto Distribution ............... 424<br/>12. Logarithmic Distributions ............................................ 427<br/>A. Introduction .............................................................. 427<br/>B. The Lognormal Distribution .......................................... 431<br/>C. Log Logistic Distributions ............................................. 441<br/>D. Log Extreme Value Distributions .................................... 442<br/>E. The Log Cauchy Distribution......................................... 443<br/>F. The Log Student’s t Distribution..................................... 445<br/>G. Alternatives for the Logarithm Function ........................... 445<br/>13. The Inverse Gaussian Distribution................................ 451<br/>A. The Inverse Gaussian Distribution................................... 452<br/>B. The Generalized Inverse Gaussian Distribution ................... 459<br/>C. The Birnbaum–Saunders Distribution............................... 466<br/>14. Distributions with Bounded Support............................. 473<br/>A. Introduction .............................................................. 473<br/>B. The Uniform Distribution and One-Parameter<br/>Extensions ................................................................ 475<br/>C. The Beta Distribution .................................................. 479<br/>D. Additional Two-Parameter Extensions of the<br/>Uniform Distribution ................................................... 489<br/>E. Introduction of a Scale Parameter ................................... 493<br/>F. Algebraic Structure of the Distributions on [0, 1]................. 494<br/>15. Additional Parametric Families..................................... 497<br/>A. Noncentral Chi-Square Distributions ................................ 497<br/>B. Noncentral F Distributions ............................................ 501<br/>C. A Noncentral Beta Distribution and the Noncentral<br/>Squared Multiple Correlation Distribution ......................... 504<br/>D. Log Distributions from Nonnegative Random Variables......... 509<br/>E. Another Extension of the Exponential Distribution .............. 518<br/>F. Weibull–Pareto–Beta Distribution ................................... 521<br/>Contents xvii<br/>G. Composite Distributions ............................................... 523<br/>H. Stable Distributions..................................................... 529<br/>Part V. Models Involving Several Variables<br/>16. Covariate Models......................................................... 533<br/>A. Introduction .............................................................. 533<br/>B. Some Regression Models ............................................... 536<br/>C. Regression Models for Other Parameters ........................... 540<br/>17. Several Types of Failure: Competing Risks .................... 541<br/>A. Definitions and Notation............................................... 542<br/>B. The Problem of Identifiability ........................................ 547<br/>C. Assumption of Independence.......................................... 549<br/>D. Verifiability of Independence .......................................... 554<br/>E. Known Copula ........................................................... 555<br/>F. Positively Dependent Latent Variables.............................. 557<br/>Part VI. More About Semi-parametric Families<br/>18. Characterizations Through Coincidences of<br/>Semiparametric Families .............................................. 563<br/>A. Introduction .............................................................. 564<br/>B. Coincidences Leading to Continuous Distributions ............... 568<br/>C. Coincidences Leading to Discrete Distributions ................... 596<br/>D. Unresolved Coincidences ............................................... 607<br/>19. More About Semiparametric Families ........................... 611<br/>A. Introduction: Stability Criteria ....................................... 611<br/>B. Classification of Parameters ........................................... 612<br/>C. Derivation of Families .................................................. 619<br/>D. Orderings Generated by Semiparametric Families ................ 626<br/>E. Related Stronger Orders ............................................... 630<br/>Part VII. Complementary Topics<br/>20. Some Topics from Probability Theory........................... 635<br/>A. Foundations............................................................... 635<br/>B. Moments .................................................................. 644<br/>C. Convergence .............................................................. 650<br/>xviii Contents<br/>D. Laplace Transforms and Infinite Divisibility ....................... 653<br/>E. Some Discrete Distributions........................................... 658<br/>F. Poisson and P&acute;olya Processes: Renewal Theory .................... 663<br/>G. Extreme-Value Distributions .......................................... 669<br/>H. Chebyshev’s Covariance Inequality .................................. 673<br/>I. Multivariate Basics...................................................... 674<br/>21. Convexity and Total Positivity...................................... 687<br/>A. Convex Functions........................................................ 687<br/>B. Total Positivity .......................................................... 694<br/>22. Some Functional Equations........................................... 701<br/>A. Cauchy’s Equations ..................................................... 701<br/>B. Variants of Cauchy’s Equations....................................... 704<br/>C. Some Additional Functional Equations ............................. 712<br/>23. Gamma and Beta Functions ......................................... 717<br/>A. The Gamma Function .................................................. 717<br/>B. The Beta Function ...................................................... 722<br/>24. Some Topics from Analysis........................................... 729<br/>A. Basic Results from Calculus........................................... 729<br/>B. Some Results Concerning Lebesgue Integrals ...................... 731<br/>References........................................................................ 733<br/>Author Index ................................................................... 763<br/>Subject Index................................................................... 771</p>
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-2-21 15:22:00
太贵了,人不可贪心,你定价1,受益反而高,定价10,收益反而低。还是经济学学的不好。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-2-21 16:54:00
<p>不是我贪心,银子太少了,我想下点别的资料都没有法子下,只好出此下策。</p><p>如果版主愿意给加精华贴,可以马上变成免费共享。</p>
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-2-24 17:45:00
nice
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-2-25 10:10:00
<p>看目录好像还不错</p>
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群