<p>刚学这个东西,看不懂结果,请教下以下结果要怎么看啊??谢谢谢谢</p><p>The options chosen are:<br/>h =&nbsp; 28.0000 <br/>eps1 =&nbsp; 0.1500 <br/>hetdat =&nbsp; 1.0000 <br/>hetvar =&nbsp; 1.0000 <br/>hetomega =&nbsp; 1.0000 <br/>hetq =&nbsp; 1.0000 <br/>robust =&nbsp; 1.0000 (prewhit =&nbsp; 1.0000 )<br/>The maximum number of breaks is:&nbsp; 5.0000 <br/>********************************************************<br/>Output from the global optimization<br/>********************************************************<br/>The model with 1.0000 breaks has SSR :&nbsp; 34.9487 <br/>The dates of the breaks are:&nbsp;&nbsp; 42.0000 <br/>The model with 2.0000 breaks has SSR :&nbsp; 29.4489 <br/>The dates of the breaks are:&nbsp; <br/>&nbsp;42.0000 <br/>&nbsp;84.0000 <br/>The model with 3.0000 breaks has SSR :&nbsp; 29.1108 <br/>The dates of the breaks are:&nbsp; <br/>&nbsp;42.0000 <br/>&nbsp;92.0000 <br/>&nbsp;120.0000 <br/>The model with 4.0000 breaks has SSR :&nbsp; 28.5707 <br/>The dates of the breaks are:&nbsp; <br/>&nbsp;42.0000 <br/>&nbsp;92.0000 <br/>&nbsp;120.0000 <br/>&nbsp;152.0000 <br/>The model with 5.0000 breaks has SSR :&nbsp; 30.1982 <br/>The dates of the breaks are:&nbsp; <br/>&nbsp;42.0000 <br/>&nbsp;70.0000 <br/>&nbsp;98.0000 <br/>&nbsp;126.0000 <br/>&nbsp;154.0000 <br/>********************************************************<br/>Output from the testing procedures<br/>********************************************************<br/>a) supF tests against a fixed number of breaks<br/>--------------------------------------------------------------<br/>The supF test for 0 versus 1.0000 breaks (scaled by q) is: 11.8300 <br/>The supF test for 0 versus 2.0000 breaks (scaled by q) is: 7.1363 <br/>The supF test for 0 versus 3.0000 breaks (scaled by q) is: 6.3308 <br/>The supF test for 0 versus 4.0000 breaks (scaled by q) is: 7.3353 <br/>The supF test for 0 versus 5.0000 breaks (scaled by q) is: 3.6518 <br/>-------------------------<br/>The critical values at the&nbsp; 10.0000 % level are (for k=1 to&nbsp; 5.0000 ):<br/>&nbsp;7.0400&nbsp; 6.2800&nbsp; 5.2100&nbsp; 4.4100&nbsp; 3.4700 <br/>The critical values at the&nbsp; 5.0000 % level are (for k=1 to&nbsp; 5.0000 ):<br/>&nbsp;8.5800&nbsp; 7.2200&nbsp; 5.9600&nbsp; 4.9900&nbsp; 3.9100 <br/>The critical values at the&nbsp; 2.5000 % level are (for k=1 to&nbsp; 5.0000 ):<br/>&nbsp;10.1800&nbsp; 8.1400&nbsp; 6.7200&nbsp; 5.5100&nbsp; 4.3400 <br/>The critical values at the&nbsp; 1.0000 % level are (for k=1 to&nbsp; 5.0000 ):<br/>&nbsp;12.2900&nbsp; 9.3600&nbsp; 7.6000&nbsp; 6.1900&nbsp; 4.9100 <br/>--------------------------------------------------------------<br/>b) Dmax tests against an unknown number of breaks<br/>--------------------------------------------------------------<br/>The UDmax test is:&nbsp; 11.8300 <br/>(the critical value at the&nbsp; 10.0000 % level is:&nbsp; 7.4600 )<br/>(the critical value at the&nbsp; 5.0000 % level is:&nbsp; 8.8800 )<br/>(the critical value at the&nbsp; 2.5000 % level is:&nbsp; 10.3900 )<br/>(the critical value at the&nbsp; 1.0000 % level is:&nbsp; 12.3700 )<br/>********************************************************<br/>---------------------<br/>The WDmax test at the&nbsp; 10.0000 % level is:&nbsp; 11.8300 <br/>(The critical value is:&nbsp; 8.2000 )<br/>---------------------<br/>The WDmax test at the&nbsp; 5.0000 % level is:&nbsp; 12.6127 <br/>(The critical value is:&nbsp; 9.9100 )<br/>---------------------<br/>The WDmax test at the&nbsp; 2.5000 % level is:&nbsp; 13.5524 <br/>(The critical value is:&nbsp; 11.6700 )<br/>---------------------<br/>The WDmax test at the&nbsp; 1.0000 % level is:&nbsp; 14.5640 <br/>(The critical value is:&nbsp; 13.8300 )<br/>********************************************************<br/>supF(l+1|l) tests using global otimizers under the null<br/>--------------------------------------------------------------<br/>The supF( 2.0000 | 1.0000 ) test is :&nbsp; 6.4337 <br/>It corresponds to a new break at:&nbsp; 84.0000 <br/>The supF( 3.0000 | 2.0000 ) test is :&nbsp; 2.0548 <br/>It corresponds to a new break at:&nbsp; 152.0000 <br/>The supF( 4.0000 | 3.0000 ) test is :&nbsp; 6.7518 <br/>It corresponds to a new break at:&nbsp; 152.0000 <br/>Given the location of the breaks from the global optimization<br/>with&nbsp; 4.0000 breaks there was no more place to insert <br/>an additional breaks that satisfy the minimal length requirement.<br/>The supF( 5.0000 | 4.0000 ) test is :&nbsp; 0.0000 <br/>It corresponds to a new break at:&nbsp; 0.0000 <br/>********************************************************<br/>The critical values of supF(i+1|i) at the&nbsp; 10.0000 % level are (for i=1 to&nbsp; 5.0000 ) are: <br/>&nbsp;7.0400&nbsp; 8.5100&nbsp; 9.4100&nbsp; 10.0400&nbsp; 10.5800 <br/>The critical values of supF(i+1|i) at the&nbsp; 5.0000 % level are (for i=1 to&nbsp; 5.0000 ) are: <br/>&nbsp;8.5800&nbsp; 10.1300&nbsp; 11.1400&nbsp; 11.8300&nbsp; 12.2500 <br/>The critical values of supF(i+1|i) at the&nbsp; 2.5000 % level are (for i=1 to&nbsp; 5.0000 ) are: <br/>&nbsp;10.1800&nbsp; 11.8600&nbsp; 12.6600&nbsp; 13.4000&nbsp; 13.8900 <br/>The critical values of supF(i+1|i) at the&nbsp; 1.0000 % level are (for i=1 to&nbsp; 5.0000 ) are: <br/>&nbsp;12.2900&nbsp; 13.8900&nbsp; 14.8000&nbsp; 15.2800&nbsp; 15.7600 <br/>********************************************************<br/>Output from the application of Information criteria<br/>--------------------------------------------------------------<br/>Values of BIC and lwz with&nbsp; 0.0000&nbsp; breaks: -1.5965 -1.5911 <br/>Values of BIC and lwz with&nbsp; 1.0000&nbsp; breaks: -1.6324 -1.5693 <br/>Values of BIC and lwz with&nbsp; 2.0000&nbsp; breaks: -1.7482 -1.6271 <br/>Values of BIC and lwz with&nbsp; 3.0000&nbsp; breaks: -1.7042 -1.5251 <br/>Values of BIC and lwz with&nbsp; 4.0000&nbsp; breaks: -1.6675 -1.4302 <br/>Values of BIC and lwz with&nbsp; 5.0000&nbsp; breaks: -1.5566 -1.2610 <br/>The number of breaks chosen by BIC is : 2.0000 <br/>The number of breaks chosen by LWZ is : 2.0000 <br/>********************************************************<br/>Output from the sequential procedure at significance level&nbsp; 10.0000 %<br/>--------------------------------------------------------------<br/>The first break found is at:&nbsp; 42.0000 <br/>----------------------------------------------------<br/>The sequential procedure estimated the number of breaks at: 1.0000 <br/>********************************************************<br/>Output from the sequential procedure at significance level&nbsp; 5.0000 %<br/>--------------------------------------------------------------<br/>The first break found is at:&nbsp; 42.0000 <br/>----------------------------------------------------<br/>The sequential procedure estimated the number of breaks at: 1.0000 <br/>********************************************************<br/>Output from the sequential procedure at significance level&nbsp; 2.5000 %<br/>--------------------------------------------------------------<br/>The first break found is at:&nbsp; 42.0000 <br/>----------------------------------------------------<br/>The sequential procedure estimated the number of breaks at: 1.0000 <br/>********************************************************<br/>Output from the sequential procedure at significance level&nbsp; 1.0000 %<br/>--------------------------------------------------------------<br/>----------------------------------------------------<br/>The sequential procedure estimated the number of breaks at: 0.0000 <br/>********************************************************<br/>Output from the repartition procedure for the&nbsp; 10.0000 % significance level<br/>----------------------------------------<br/>The updated break dates are : 42.0000 <br/>********************************************************<br/>Output from the repartition procedure for the&nbsp; 5.0000 % significance level<br/>----------------------------------------<br/>The updated break dates are : 42.0000 <br/>********************************************************<br/>Output from the repartition procedure for the&nbsp; 2.5000 % significance level<br/>----------------------------------------<br/>The updated break dates are : 42.0000 <br/>********************************************************<br/>Output from the repartition procedure for the&nbsp; 1.0000 % significance level<br/>********************************************************<br/>The sequential procedure found no break and <br/>the repartition procedure is skipped.<br/>********************************************************<br/>********************************************************<br/>Output from the estimation of the model selected by BIC<br/>--------------------------------------------------------------<br/>Valid cases:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 189&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Dependent variable:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Y<br/>Missing cases:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Deletion method:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; None<br/>Total SS:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 38.294&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Degrees of freedom:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 186<br/>R-squared:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.231&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Rbar-squared:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.223<br/>Residual SS:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 29.449&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Std error of est:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.398<br/>F(3,186):&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 18.622&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Probability of F:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.000<br/>Durbin-Watson:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.337</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Standard&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Prob&nbsp;&nbsp; Standardized&nbsp; Cor with<br/>Variable&nbsp;&nbsp;&nbsp;&nbsp; Estimate&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Error&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; t-value&nbsp;&nbsp;&nbsp;&nbsp; &gt;|t|&nbsp;&nbsp;&nbsp;&nbsp; Estimate&nbsp;&nbsp;&nbsp; Dep Var<br/>-------------------------------------------------------------------------------<br/>X1&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.096598&nbsp;&nbsp;&nbsp; 0.061398&nbsp;&nbsp;&nbsp; 1.573319&nbsp;&nbsp;&nbsp;&nbsp; 0.117&nbsp;&nbsp;&nbsp; 0.080250&nbsp;&nbsp;&nbsp; 0.080250<br/>X2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.722450&nbsp;&nbsp;&nbsp; 0.061398&nbsp;&nbsp; 11.766690&nbsp;&nbsp;&nbsp;&nbsp; 0.000&nbsp;&nbsp;&nbsp; 0.600182&nbsp;&nbsp;&nbsp; 0.600182<br/>X3&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.294283&nbsp;&nbsp;&nbsp; 0.038831&nbsp;&nbsp;&nbsp; 7.578473&nbsp;&nbsp;&nbsp;&nbsp; 0.000&nbsp;&nbsp;&nbsp; 0.386554&nbsp;&nbsp;&nbsp; 0.386554<br/>--------------------------------------------------------------<br/>Corrected standard errors for the coefficients<br/>--------------------------------------------------------------<br/>The corrected standard error for coefficient 1.0000 is: 0.0688 <br/>The corrected standard error for coefficient 2.0000 is: 0.1651 <br/>The corrected standard error for coefficient 3.0000 is: 0.0293 <br/>--------------------------------------------------------------<br/>Confidence intervals for the break dates<br/>--------------------------------------------------------------<br/>The 95% C.I. for the 1.0000 th break is:&nbsp; 7.0000&nbsp; 46.0000 <br/>The 90% C.I. for the 1.0000 th break is:&nbsp; 17.0000&nbsp; 44.0000 <br/>The 95% C.I. for the 2.0000 th break is:&nbsp; 82.0000&nbsp; 159.0000 <br/>The 90% C.I. for the 2.0000 th break is:&nbsp; 83.0000&nbsp; 138.0000 <br/>********************************************************<br/>********************************************************<br/>Output from the estimation of the model selected by the<br/>&nbsp;sequential method at significance level&nbsp; 10.0000 %<br/>--------------------------------------------------------------<br/>Valid cases:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 189&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Dependent variable:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Y<br/>Missing cases:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Deletion method:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; None<br/>Total SS:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 38.294&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Degrees of freedom:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 187<br/>R-squared:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.087&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Rbar-squared:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.082<br/>Residual SS:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 34.949&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Std error of est:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.432<br/>F(2,187):&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8.950&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Probability of F:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.000<br/>Durbin-Watson:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.139</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Standard&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Prob&nbsp;&nbsp; Standardized&nbsp; Cor with<br/>Variable&nbsp;&nbsp;&nbsp;&nbsp; Estimate&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Error&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; t-value&nbsp;&nbsp;&nbsp;&nbsp; &gt;|t|&nbsp;&nbsp;&nbsp;&nbsp; Estimate&nbsp;&nbsp;&nbsp; Dep Var<br/>-------------------------------------------------------------------------------<br/>X1&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.096598&nbsp;&nbsp;&nbsp; 0.066707&nbsp;&nbsp;&nbsp; 1.448105&nbsp;&nbsp;&nbsp;&nbsp; 0.149&nbsp;&nbsp;&nbsp; 0.080250&nbsp;&nbsp;&nbsp; 0.080250<br/>X2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.416616&nbsp;&nbsp;&nbsp; 0.035656&nbsp;&nbsp; 11.684234&nbsp;&nbsp;&nbsp;&nbsp; 0.000&nbsp;&nbsp;&nbsp; 0.647509&nbsp;&nbsp;&nbsp; 0.647509<br/>--------------------------------------------------------------<br/>Corrected standard errors for the coefficients<br/>--------------------------------------------------------------<br/>The corrected standard error for coefficient 1.0000 is: 0.0688 <br/>The corrected standard error for coefficient 2.0000 is: 0.0619 <br/>--------------------------------------------------------------<br/>Confidence intervals for the break dates<br/>--------------------------------------------------------------<br/>The 95% C.I. for the 1.0000 th break is: -23.0000&nbsp; 60.0000 <br/>The 90% C.I. for the 1.0000 th break is: -5.0000&nbsp; 54.0000 <br/>********************************************************<br/>for the&nbsp; 5.0000 % level, the model is the same as for the&nbsp; 10.0000 % level.<br/>The estimation is not repeated.<br/>----------------------------------------------------------------<br/>for the&nbsp; 2.5000 % level, the model is the same as for the&nbsp; 5.0000 % level.<br/>The estimation is not repeated.<br/>----------------------------------------------------------------</p>