全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
3848 10
2009-03-30
<p><strong>  综列数据,与 面板数据稍有不同。2009年新书,只收一元。</strong></p><p><strong>Methodology of Longitudinal Surveys</strong></p><p> </p><p>Contents<br/>Preface xv<br/>1 Methods for Longitudinal Surveys 1<br/>Peter Lynn<br/>1.1 Introduction 1<br/>1.2 Types of Longitudinal Surveys 2<br/>1.3 Strengths of Longitudinal Surveys 4<br/>1.3.1 Analysis Advantages 4<br/>1.3.2 Data Collection Advantages 6<br/>1.4 Weaknesses of Longitudinal Surveys 8<br/>1.4.1 Analysis Disadvantages 8<br/>1.4.2 Data Collection Disadvantages 9<br/>1.5 Design Features Specific to Longitudinal Surveys 11<br/>1.5.1 Population, Sampling and Weighting 11<br/>1.5.2 Other Design Issues 13<br/>1.6 Quality in Longitudinal Surveys 15<br/>1.6.1 Coverage Error 15<br/>1.6.2 Sampling Error 16<br/>1.6.3 Nonresponse Error 16<br/>1.6.4 Measurement Error 16<br/>1.7 Conclusions 17<br/>References 18<br/>2 Sample Design for Longitudinal Surveys 21<br/>Paul Smith, Peter Lynn and Dave Elliot<br/>2.1 Introduction 21<br/>2.2 Types of Longitudinal Sample Design 21<br/>2.3 Fundamental Aspects of Sample Design 23<br/>2.3.1 Defining the Longitudinal Population 23<br/>v<br/>2.3.2 Target Variables 24<br/>2.3.3 Sample Size 25<br/>2.3.4 Clustering 26<br/>2.3.5 Treatment of Movers 26<br/>2.3.6 Stratification 27<br/>2.3.7 Variances and Design Effects 27<br/>2.3.8 Selection Probabilities 28<br/>2.4 Other Aspects of Design and Implementation 28<br/>2.4.1 Choice of Rotation Period and Pattern 28<br/>2.4.2 Dealing with Births (and Deaths) 29<br/>2.4.3 Sample Overlap 30<br/>2.4.4 Stability of Units and Hierarchies 31<br/>2.5 Conclusion 32<br/>References 32<br/>3 Ethical Issues in Longitudinal Surveys 35<br/>Carli Lessof<br/>3.1 Introduction 35<br/>3.2 History of Research Ethics 35<br/>3.3 Informed Consent 38<br/>3.3.1 Initial Consent 38<br/>3.3.2 Continuing Consent 39<br/>3.3.3 Consent to Trace Respondents 39<br/>3.3.4 Consent for Unanticipated Activities or Analyses 40<br/>3.3.5 Implications for Consent of Changing Circumstances<br/>of Sample Members 40<br/>3.3.6 Consent for Linkage to Administrative Data 41<br/>3.3.7 Using Administrative Data without Full Consent 42<br/>3.3.8 Can Fully Informed Consent be Realised? 43<br/>3.4 Free Choice Regarding Participation 43<br/>3.5 Avoiding Harm 46<br/>3.6 Participant Confidentiality and Data Protection 49<br/>3.6.1 Dependent Interviewing 49<br/>3.6.2 The Treatment of Research Data 50<br/>3.7 Independent Ethical Overview and Participant<br/>Involvement 52<br/>Acknowledgements 53<br/>References 53<br/>4 Enhancing Longitudinal Surveys by Linking to Administrative Data 55<br/>Lisa Calderwood and Carli Lessof<br/>4.1 Introduction 55<br/>4.2 Administrative Data as a Research Resource 56<br/>4.3 Record Linkage Methodology 58<br/>4.4 Linking Survey Data with Administrative Data at Individual Level 61<br/>4.4.1 Sampling, Sample Maintenance and Sample Evaluation 61<br/>vi CONTENTS<br/>4.4.2 Evaluation Methodology 62<br/>4.4.3 Supplementing and Validating Survey Data 63<br/>4.5 Ethical and Legal Issues 67<br/>4.5.1 Ethical Issues 68<br/>4.5.2 Legal Issues 68<br/>4.5.3 Disclosure Control 68<br/>4.6 Conclusion 69<br/>References 69<br/>5 Tackling Seam Bias Through Questionnaire Design 73<br/>Jeffrey Moore, Nancy Bates, Joanne Pascale and<br/>Aniekan Okon<br/>5.1 Introduction 73<br/>5.2 Previous Research on Seam Bias 74<br/>5.3 SIPP and its Dependent Interviewing Procedures 75<br/>5.3.1 SIPP’s Pre-2004 Use of DI 76<br/>5.3.2 Development of New DI Procedures 76<br/>5.3.3 Testing and Refining the New Procedures 78<br/>5.4 Seam Bias Comparison – SIPP 2001 and SIPP 2004 79<br/>5.4.1 Seam Bias Analysis for Programme Participation<br/>and Other ‘Spell’ Characteristics 79<br/>5.4.2 Seam Bias Evaluation for Income Amount<br/>Transitions 87<br/>5.5 Conclusions and Discussion 89<br/>Acknowledgements 90<br/>References 90<br/>6 Dependent Interviewing: A Framework and Application<br/>to Current Research 93<br/>Annette Ja¨ckle<br/>6.1 Introduction 93<br/>6.2 Dependent Interviewing – What and Why? 94<br/>6.2.1 Data Quality 94<br/>6.2.2 Survey Processes 95<br/>6.3 Design Options and their Effects 95<br/>6.3.1 Reactive Dependent Interviewing 96<br/>6.3.2 Proactive Dependent Interviewing 97<br/>6.4 Empirical Evidence 99<br/>6.4.1 Income Sources 100<br/>6.4.2 Current Earnings 104<br/>6.4.3 Current Employment 105<br/>6.4.4 Labour Market Activity Histories 105<br/>6.4.5 School-Based Qualifications 106<br/>6.5 Effects of Dependent Interviewing on Data Quality<br/>Across Surveys 107<br/>CONTENTS vii<br/>6.6 Open Issues 109<br/>Acknowledgements 109<br/>References 110<br/>7 Attitudes Over Time: The Psychology of Panel Conditioning 113<br/>Patrick Sturgis, Nick Allum and Ian Brunton-Smith<br/>7.1 Introduction 113<br/>7.2 Panel Conditioning 114<br/>7.3 The Cognitive Stimulus Hypothesis 116<br/>7.4 Data and Measures 117<br/>7.5 Analysis 118<br/>7.6 Discussion 123<br/>References 124<br/>8 Some Consequences of Survey Mode Changes in Longitudinal Surveys 127<br/>Don A. Dillman<br/>8.1 Introduction 127<br/>8.2 Why Change Survey Modes in Longitudinal Surveys? 128<br/>8.3 Why Changing Survey Mode Presents a Problem 130<br/>8.3.1 Changes in Question Structure 130<br/>8.3.2 Effects of Visual vs. Aural Communication Channels 132<br/>8.3.3 Interviewer Presence 135<br/>8.3.4 How Answers to Scalar Questions are Affected by<br/>Visual vs. Aural Communication 136<br/>8.4 Conclusions 137<br/>References 137<br/>9 Using Auxiliary Data for Adjustment in Longitudinal Research 141<br/>Dirk Sikkel, Joop Hox and Edith de Leeuw<br/>9.1 Introduction 141<br/>9.2 Missing Data 142<br/>9.3 Calibration 144<br/>9.4 Calibrating Multiple Waves 147<br/>9.5 Differences Between Waves 149<br/>9.6 Single Imputation 150<br/>9.7 Multiple Imputation 151<br/>9.8 Conclusion and Discussion 153<br/>References 155<br/>10 Identifying Factors Affecting Longitudinal Survey Response 157<br/>Nicole Watson and Mark Wooden<br/>10.1 Introduction 157<br/>10.2 Factors Affecting Response and Attrition 159<br/>viii CONTENTS<br/>10.2.1 Locating the Sample Member 159<br/>10.2.2 Contacting the Sample Member 160<br/>10.2.3 Obtaining the Cooperation of the Sample Member 162<br/>10.2.4 The Role of Respondent Characteristics 164<br/>10.3 Predicting Response in the HILDA Survey 167<br/>10.3.1 The HILDA Survey Data 168<br/>10.3.2 Estimation Approach 169<br/>10.3.3 Explanatory Variables 169<br/>10.3.4 Results 171<br/>10.4 Conclusion 178<br/>References 179<br/>11 Keeping in Contact with Mobile Sample Members 183<br/>Mick P. Couper and Mary Beth Ofstedal<br/>11.1 Introduction 183<br/>11.2 The Location Problem in Panel Surveys 184<br/>11.2.1 The Likelihood of Moving 185<br/>11.2.2 The Likelihood of Being Located, Given a Move 187<br/>11.3 Case Study 1: Panel Study of Income Dynamics 190<br/>11.4 Case Study 2: Health and Retirement Study 196<br/>11.5 Discussion 200<br/>Acknowledgements 201<br/>References 202<br/>12 The Use of Respondent Incentives on Longitudinal<br/>Surveys 205<br/>Heather Laurie and Peter Lynn<br/>12.1 Introduction 205<br/>12.2 Respondent Incentives on Cross-Sectional Surveys 206<br/>12.2.1 Effects of Incentives on Response Rates on Mail<br/>Surveys 206<br/>12.2.2 Effects of Incentives on Response Rates on<br/>Interviewer-Administered Surveys 207<br/>12.2.3 Effects of Incentives on Sample Composition and Bias 207<br/>12.2.4 Effects of Incentives on Data Quality 208<br/>12.2.5 Summary: Effects of Incentives 208<br/>12.3 Respondent Incentives on Longitudinal Surveys 208<br/>12.4 Current Practice on Longitudinal Surveys 211<br/>12.5 Experimental Evidence on Longitudinal Surveys 218<br/>12.5.1 Previous Experiments on UK Longitudinal Surveys 221<br/>12.5.2 British Household Panel Survey Incentive Experiment 222<br/>12.6 Conclusion 229<br/>Acknowledgements 230<br/>References 231<br/>CONTENTS ix<br/>13 Attrition in Consumer Panels 235<br/>Robert D. Tortora<br/>13.1 Introduction 235<br/>13.2 The Gallup Poll Panel 237<br/>13.3 Attrition on the Gallup Poll Panel 241<br/>13.3.1 Descriptive Analysis 241<br/>13.3.2 Experiments 244<br/>13.3.3 Logistic Regression 246<br/>13.3.4 A Serendipitous Finding: The Relationship Between<br/>Type of Survey and Attrition 246<br/>13.4 Summary 248<br/>References 248<br/>14 Joint Treatment of Nonignorable Dropout and Informative Sampling<br/>for Longitudinal Survey Data 251<br/>Abdulhakeem A. H. Eideh and Gad Nathan<br/>14.1 Introduction 251<br/>14.2 Population Model 255<br/>14.3 Sampling Design and Sample Distribution 256<br/>14.3.1 Theorem 1 256<br/>14.3.2 Theorem 2 257<br/>14.4 Sample Distribution Under Informative Sampling and Informative<br/>Dropout 257<br/>14.5 Sample Likelihood and Estimation 258<br/>14.5.1 Two-Step Estimation 259<br/>14.5.2 Pseudo Likelihood Approach 259<br/>14.6 Empirical Example: British Labour Force Survey 260<br/>14.7 Conclusions 262<br/>References 263<br/>15 Weighting and Calibration for Household Panels 265<br/>Ulrich Rendtel and Torsten Harms<br/>15.1 Introduction 265<br/>15.2 Follow-up Rules 266<br/>15.2.1 Population Definitions 266<br/>15.2.2 Samples and Follow-up 268<br/>15.3 Design-Based Estimation 269<br/>15.3.1 The Horvitz–Thompson Estimator 269<br/>15.3.2 Link Functions 270<br/>15.3.3 Convexity and Variance of the Weighted Estimator 273<br/>15.4 Calibration 274<br/>15.4.1 Types of Calibration within Panels 275<br/>15.4.2 Bias and Variance 276<br/>15.5 Nonresponse and Attrition 278<br/>x CONTENTS<br/>15.5.1 Empirical Evidence Regarding Nonresponse and Attrition 278<br/>15.5.2 Treatment via Model-Based Prediction 281<br/>15.5.3 Treatment via Estimation of Response Probabilities 281<br/>15.6 Summary 285<br/>References 285<br/>16 Statistical Modelling for Structured Longitudinal Designs 287<br/>Ian Plewis<br/>16.1 Introduction 287<br/>16.2 Methodological Framework 288<br/>16.3 The Data 290<br/>16.4 Modelling One Response from One Cohort 292<br/>16.5 Modelling One Response from More Than One Cohort 295<br/>16.6 Modelling More Than One Response from One Cohort 297<br/>16.7 Modelling Variation Between Generations 298<br/>16.8 Conclusion 300<br/>References 301<br/>17 Using Longitudinal Surveys to Evaluate Interventions 303<br/>Andrea Piesse, David Judkins and Graham Kalton<br/>17.1 Introduction 303<br/>17.2 Interventions, Outcomes and Longitudinal Data 304<br/>17.2.1 Form of the Intervention 304<br/>17.2.2 Types of Effects 305<br/>17.2.3 Conditions for the Evaluation 305<br/>17.2.4 Controlling for Confounders in the Analysis 306<br/>17.2.5 Value of Longitudinal Surveys 307<br/>17.3 Youth Media Campaign Longitudinal Survey 309<br/>17.4 National Survey of Parents and Youth 311<br/>17.5 Gaining Early Awareness and Readiness for<br/>Undergraduate Programs (GEAR UP) 314<br/>17.6 Concluding Remarks 315<br/>References 315<br/>18 Robust Likelihood-Based Analysis of Longitudinal Survey Data<br/>with Missing Values 317<br/>Roderick Little and Guangyu Zhang<br/>18.1 Introduction 317<br/>18.2 Multiple Imputation for Repeated-Measures Data 318<br/>18.3 Robust MAR Inference with a Single Missing Outcome 320<br/>18.4 Extensions of PSPP to Monotone and General Patterns 323<br/>18.5 Extensions to Inferences Other than Means 324<br/>18.6 Example 325<br/>CONTENTS xi<br/>18.7 Discussion 328<br/>Acknowledgements 330<br/>References 330<br/>19 Assessing the Temporal Association of Events Using Longitudinal<br/>Complex Survey Data 333<br/>Norberto Pantoja-Galicia, Mary E. Thompson and Milorad<br/>S. Kovacevic<br/>19.1 Introduction 333<br/>19.2 Temporal Order 334<br/>19.2.1 Close Precursor 334<br/>19.2.2 Nonparametric Test for Close Precursor 335<br/>19.3 Nonparametric Density Estimation 335<br/>19.3.1 Kernel Density Estimation 336<br/>19.3.2 Local Likelihood Approach 337<br/>19.4 Survey Weights 340<br/>19.4.1 Assessing the Standard Error 341<br/>19.5 Application: The National Population Health Survey 341<br/>19.5.1 Pregnancy and Smoking Cessation 342<br/>19.5.2 Subsample 342<br/>19.5.3 Interval-Censored Times 342<br/>19.5.4 Results 343<br/>19.6 Application: The Survey of Labour and Income Dynamics 344<br/>19.6.1 Job Loss and Separation or Divorce 345<br/>19.6.2 Subsample 345<br/>19.6.3 Interval-Censored Times 345<br/>19.6.4 Results 346<br/>19.7 Discussion 347<br/>Acknowledgements 348<br/>References 348<br/>20 Using Marginal Mean Models for Data from Longitudinal Surveys<br/>with a Complex Design: Some Advances in Methods 351<br/>Georgia Roberts, Qunshu Ren and J.N.K. Rao<br/>20.1 Introduction 351<br/>20.2 Survey-Weighted GEE and Odds Ratio Approach 354<br/>20.3 Variance Estimation: One-Step EF–Bootstrap 356<br/>20.4 Goodness-of-Fit Tests 357<br/>20.4.1 Construction of Groups 358<br/>20.4.2 Quasi-Score Test 358<br/>20.4.3 Adjusted Hosmer–Lemeshow Test 360<br/>20.5 Illustration Using NPHS Data 361<br/>20.5.1 Parameter Estimates and Standard Errors 362<br/>20.5.2 Goodness-of-Fit Tests 363<br/>20.6 Summary 364<br/>References 365<br/>xii CONTENTS<br/>21 A Latent Class Approach for Estimating Gross Flows in the Presence<br/>of Correlated Classification Errors 367<br/>Francesca Bassi and Ugo Trivellato<br/>21.1 Introduction 367<br/>21.2 Correlated Classification Errors and Latent Class Modelling 368<br/>21.3 The Data and Preliminary Analysis 371<br/>21.4 A Model for Correlated Classification Errors in Retrospective<br/>Surveys 373<br/>21.5 Concluding Remarks 378<br/>Acknowledgements 379<br/>References 379<br/>22 A Comparison of Graphical Models and Structural Equation Models<br/>for the Analysis of Longitudinal Survey Data 381<br/>Peter W. F. Smith, Ann Berrington and Patrick Sturgis<br/>22.1 Introduction 381<br/>22.2 Conceptual Framework 382<br/>22.3 Graphical Chain Modelling Approach 383<br/>22.4 Structural Equation Modelling Approach 384<br/>22.5 Model Fitting 385<br/>22.6 Results 386<br/>22.7 Conclusions 390<br/>Acknowledgements 391<br/>References 391<br/>Index 393</p><p></p><p>[UseMoney=1]</p><p>
309532.rar
大小:(2.59 MB)

只需: 1 个论坛币  马上下载

本附件包括:

  • 0470018712.pdf

<br/></p>[/UseMoney]

[此贴子已经被作者于2009-3-30 10:10:08编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-3-30 01:01:00
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-3-30 07:52:00
楼主没设置好,成免费了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-3-30 09:25:00

谢谢楼主分享

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-3-30 10:01:00
不收钱的好书!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-3-30 10:57:00
楼主,想买都不容易啊!
谢谢分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群