全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 SAS专版
3523 5
2016-02-19
The Information Value (IV) statistic is a popular screener for selecting predictor variables for binary logistic regression. Familiar, but perhaps mysterious, guidelines for deciding if the IV of a predictor X is high enough to use in modeling are given in many  textbooks on credit scoring. For example, these texts say that IV > 0.3 shows X to be a strong predictor. These guidelines must be considered in the context of binning. A common practice in preparing a predictor X is to bin the levels of X to remove outliers and reveal a trend. But IV decreases as the levels of X are collapsed. This paper has two goals: (1) Provide a method for collapsing the levels of X which maximizes IV at each iteration and (2) show how the guidelines (e.g. IV > 0.3) relate to other measures of predictive power. All data processing was performed using Base SAS®.






二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-2-19 12:36:34
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-2-19 15:13:21
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-2-20 01:00:04
IV (information value is a good way to select variables that are relevant.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-2-20 03:26:26
Good reference. By any chance do you have his Macro code? He has several articles and SAS macros.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群