使用functools.lru_cache
Python的functools模块提供一种非常实用的装饰器,即lru_cache。需要注意的是,其在3.2版本当中才被添加进来。根据说明文档所言,该装饰器能够“利用可调用内存对函数进行打包,从而削减最近调用的最大尺寸。”接下来,我们将根据说明文档中提到的示例编写一项基本功能,其中包含多个网络页面。在这种情况下,我们可以直接从Python说明文档站点处获取页面。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import urllib.error
import urllib.request
from functools import lru_cache
@lru_cache(maxsize=24)
def get_webpage(module):
"""
获取特定Python模块网络页面
"""
webpage = "https://docs.python.org/3/library/{}.html".format(module)
try:
with urllib.request.urlopen(webpage) as request:
return request.read()
except urllib.error.HTTPError:
return None
if __name__ == '__main__':
modules = ['functools', 'collections', 'os', 'sys']
for module in modules:
page = get_webpage(module)
if page:
print("{} module page found".format(module))
在以上代码当中,我们利用lru_cache对get_webpage函数进行了装饰,并将其最大尺寸设置为24条调用。在此之后,我们设置了一条网页字符串变量,并将其传递至我们希望函数获取的模块当中。根据我的个人经验,如果大家将其运行在某种Python解释器当中——例如IDLE——那么效果会更好。如此一来,我们就能够针对该函数运行多次循环。可以看到在首次运行上述代码时,输出结果的显示速度相对比较慢。但如果大家在同一会话中再次加以运行,那么其显示速度将极大加快——这意味着lru_cache已经正确对该调用进行了缓存处理。大家可以在自己的解释器实例当中进行试验并亲自查看结果。
另外,我们还可以将一条typed参数传递至该装饰器。其属于一条Boolean,旨在通知该装饰器在typed为设定为True时对不同类型参数进行分别缓存。
总结
现在大家已经初步了解了如何利用Python编写自己的缓存机制。这是一款有趣的工具,而且能够在各位面对大量高强度I/O调用或者希望对登录凭证等常用信息进行缓存时发挥重要作用。
原文标题:Python开发:缓存机制介绍
注:转载文章均来自于公开网络,仅供学习使用,不会用于任何商业用途,如果侵犯到原作者的权益,请您与我们联系删除或者授权事宜,联系邮箱:
contact@dataunion.org。转载数盟网站文章请注明原文章作者,否则产生的任何版权纠纷与数盟无关。