全部版块 我的主页
论坛 数据科学与人工智能 大数据分析 spark高速集群计算平台
3800 30
2016-06-16
th_g0wP5cQXW5J5c8VVpVDphbn7agJWlWMB.jpg
Pro Spark Streaming: The Zen of Real-Time Analytics Using Apache Spark  
Apress | Computer Science | July 15, 2016 | ISBN-10: 1484214803 | 231 pages | pdf | 13.41 mb
                                                

Authors: Nabi, Zubair
First book (to the best of the author’s knowledge) to target Spark Streaming

Learn the right cutting-edge skills and knowledge to leverage Spark Streaming to implement a wide array of real-time, streaming applications. Pro Spark Streaming walks you through end-to-end real-time application development using real-world applications, data, and code. Taking an application-first approach, each chapter introduces use cases from a specific industry and uses publicly available datasets from that domain to unravel the intricacies of production-grade design and implementation. The domains covered in the book include social media, the sharing economy, finance, online advertising, telecommunication, and IoT.
In the last few years, Spark has become synonymous with big data processing. DStreams enhance the underlying Spark processing engine to support streaming analysis with a novel micro-batch processing model. Pro Spark Streaming by Zubair Nabi will enable you to become a specialist of latency sensitive applications by leveraging the key features of DStreams, micro-batch processing, and functional programming. To this end, the book includes ready-to-deploy examples and actual code. Pro Spark Streaming will act as the bible of Spark Streaming.
What You'll Learn:
Spark Streaming application development and best practices
Low-level details of discretized streams
The application and vitality of streaming analytics to a number of industries and domains
Optimization of production-grade deployments of Spark Streaming via configuration recipes and instrumentation using Graphite, collectd, and Nagios
Ingestion of data from disparate sources including MQTT, Flume, Kafka, Twitter, and a custom HTTP receiver
Integration and coupling with HBase, Cassandra, and Redis
Design patterns for side-effects and maintaining state across the Spark Streaming micro-batch model
Real-time and scalable ETL using data frames, SparkSQL, Hive, and SparkR
Streaming machine learning, predictive analytics, and recommendations
Meshing batch processing with stream processing via the Lambda architecture
Who This Book Is For:
The audience includes data scientists, big data experts, BI analysts, and data architects.

Number of Illustrations and Tables
7 b/w illustrations, 61 illustrations in colour
Topics
Computer Appl. in Administrative Data Processing
Data Mining and Knowledge Discovery

本帖隐藏的内容




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-6-16 14:38:10
......
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-6-17 07:49:26
kankan
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-6-17 08:12:47
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-6-17 09:45:17
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-6-17 10:16:31
共同学习下
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群