全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 R语言论坛
14226 29
2009-06-03

Introductory Time Series with R (Use R)

Introductory Time Series with R (Use R)
By Paul S.P. Cowpertwait, Andrew V. Metcalfe



Publisher:   Springer
Number Of Pages:   278
Publication Date:   2009-05-29
ISBN-10 / ASIN:   0387886974
ISBN-13 / EAN:   9780387886978


Product Description:


Yearly global mean temperature and ocean levels, daily share prices, and the signals transmitted back to Earth by the Voyager space craft are all examples of sequential observations over time known as time series. This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://www.massey.ac.nz/~pscowper/ts.

The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.

Other download places

http://ifile.it/kjt25i7/time_series_r.rar

http://rapidshare.com/files/239528329/Introductory_Time_Series_with_R.rar
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-6-3 17:59:00
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-6-3 18:05:00
Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Time Series Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 R language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Plots, trends, and seasonal variation . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.1 A flying start: Air passenger bookings . . . . . . . . . . . . . . . . 4
1.4.2 Unemployment: Maine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Multiple time series: Electricity, beer and chocolate data 10
1.4.4 Quarterly exchange rate: GBP to NZ dollar . . . . . . . . . . . 14
1.4.5 Global temperature series . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Decomposition of series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.3 Estimating trends and seasonal effects . . . . . . . . . . . . . . . 20
1.5.4 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.5 Decomposition in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Summary of commands used in examples . . . . . . . . . . . . . . . . . . . 24
1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Expectation and the ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Expected value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 The ensemble and stationarity . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Ergodic series* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Variance function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.5 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 The correlogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Example based on air passenger series . . . . . . . . . . . . . . . 37
2.3.3 Example based on the Font Reservoir series . . . . . . . . . . . 40
2.4 Covariance of sums of random variables . . . . . . . . . . . . . . . . . . . . 41
2.5 Summary of commands used in examples . . . . . . . . . . . . . . . . . . . 42
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Forecasting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Leading variables and associated variables . . . . . . . . . . . . . . . . . . 45
3.2.1 Marine coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Building approvals publication . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 Gas supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Bass model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Model definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.3 Interpretation of the Bass model* . . . . . . . . . . . . . . . . . . . 51
3.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Exponential smoothing and the Holt-Winters method . . . . . . . . 55
3.4.1 Exponential smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 Holt-Winters method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.3 Four-year-ahead forecasts for the air passenger data . . . 62
3.5 Summary of commands used in examples . . . . . . . . . . . . . . . . . . . 64
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4 Basic Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.3 Simulation in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 Second-order properties and the correlogram . . . . . . . . . . 69
4.2.5 Fitting a white noise model . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 The backward shift operator . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.4 Random walk: Second-order properties . . . . . . . . . . . . . . . 72
4.3.5 Derivation of second-order properties* . . . . . . . . . . . . . . . 72
4.3.6 The difference operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Fitted models and diagnostic plots . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Simulated random walk series . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Exchange rate series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.3 Random walk with drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Autoregressive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Stationary and non-stationary AR processes . . . . . . . . . . 79
4.5.3 Second-order properties of an AR(1) model . . . . . . . . . . . 80
4.5.4 Derivation of second-order properties for an AR(1)
process* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.5 Correlogram of an AR(1) process . . . . . . . . . . . . . . . . . . . . 81
4.5.6 Partial autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Fitted models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6.1 Model fitted to simulated series . . . . . . . . . . . . . . . . . . . . . 82
4.6.2 Exchange rate series: Fitted AR model . . . . . . . . . . . . . . . 84
4.6.3 Global temperature series: Fitted AR model . . . . . . . . . . 85
4.7 Summary of R commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Fitted models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.1 Model fitted to simulated data . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Model fitted to the temperature series (1970–2005) . . . . 95
5.3.3 Autocorrelation and the estimation of sample statistics* 96
5.4 Generalised least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.1 GLS fit to simulated series . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.2 Confidence interval for the trend in the temperature
series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5 Linear models with seasonal variables . . . . . . . . . . . . . . . . . . . . . . 99
5.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.2 Additive seasonal indicator variables . . . . . . . . . . . . . . . . . 99
5.5.3 Example: Seasonal model for the temperature series . . . 100
5.6 Harmonic seasonal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.2 Fit to simulated series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6.3 Harmonic model fitted to temperature series (1970–2005)105
5.7 Logarithmic transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.7.2 Example using the air passenger series . . . . . . . . . . . . . . . 109
5.8 Non-linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.8.2 Example of a simulated and fitted non-linear series . . . . 113
5.9 Forecasting from regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.9.2 Prediction in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.10 Inverse transform and bias correction . . . . . . . . . . . . . . . . . . . . . . 115
5.10.1 Log-normal residual errors . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.10.2 Empirical correction factor for forecasting means . . . . . . 117
5.10.3 Example using the air passenger data . . . . . . . . . . . . . . . . 117
5.11 Summary of R commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6 Stationary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Strictly stationary series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Moving average models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.1 MA(q) process: Definition and properties . . . . . . . . . . . . . 122
6.3.2 R examples: Correlogram and simulation . . . . . . . . . . . . . 123
6.4 Fitted MA models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.1 Model fitted to simulated series . . . . . . . . . . . . . . . . . . . . . 124
6.4.2 Exchange rate series: Fitted MA model . . . . . . . . . . . . . . 126
6.5 Mixed models: The ARMA process . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5.2 Derivation of second-order properties* . . . . . . . . . . . . . . . 128
6.6 ARMA models: Empirical analysis . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.6.1 Simulation and fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.6.2 Exchange rate series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.6.3 Electricity production series . . . . . . . . . . . . . . . . . . . . . . . . 130
6.6.4 Wave tank data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.7 Summary of R commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7 Non-stationary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2 Non-seasonal ARIMA models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.1 Differencing and the electricity series . . . . . . . . . . . . . . . . 137
7.2.2 Integrated model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2.3 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.4 Simulation and fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2.5 IMA(1, 1) model fitted to the beer production series . . . 141
7.3 Seasonal ARIMA models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.3.2 Fitting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.4 ARCH models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4.1 S&P500 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4.2 Modelling volatility: Definition of the ARCH model . . . . 147
7.4.3 Extensions and GARCH models . . . . . . . . . . . . . . . . . . . . . 148
7.4.4 Simulation and fitted GARCH model . . . . . . . . . . . . . . . . 149
7.4.5 Fit to S&P500 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.4.6 Volatility in climate series . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.4.7 GARCH in forecasts and simulations . . . . . . . . . . . . . . . . 155
7.5 Summary of R commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8 Long-Memory Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.2 Fractional differencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.3 Fitting to simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.4 Assessing evidence of long-term dependence . . . . . . . . . . . . . . . . . 164
8.4.1 Nile minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.4.2 Bellcore Ethernet data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.4.3 Bank loan rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.6 Summary of additional commands used . . . . . . . . . . . . . . . . . . . . 168
8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.2 Periodic signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.2.1 Sine waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.2.2 Unit of measurement of frequency . . . . . . . . . . . . . . . . . . . 172
9.3 Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.3.1 Fitting sine waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.3.2 Sample spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.4 Spectra of simulated series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.4.1 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.4.2 AR(1): Positive coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.4.3 AR(1): Negative coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 178
9.4.4 AR(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
9.5 Sampling interval and record length. . . . . . . . . . . . . . . . . . . . . . . . 179
9.5.1 Nyquist frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.5.2 Record length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.6.1 Wave tank data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.6.2 Fault detection on electric motors . . . . . . . . . . . . . . . . . . . 183
9.6.3 Measurement of vibration dose . . . . . . . . . . . . . . . . . . . . . . 184
9.6.4 Climatic indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.6.5 Bank loan rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.7 Discrete Fourier transform (DFT)* . . . . . . . . . . . . . . . . . . . . . . . . 190
9.8 The spectrum of a random process* . . . . . . . . . . . . . . . . . . . . . . . . 192
9.8.1 Discrete white noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.8.2 AR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.8.3 Derivation of spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.9 Autoregressive spectrum estimation . . . . . . . . . . . . . . . . . . . . . . . . 194
9.10 Finer details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.10.1 Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.10.2 Confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.10.3 Daniell windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.10.4 Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.10.5 Tapering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.10.6 Spectral analysis compared with wavelets . . . . . . . . . . . . . 197
9.11 Summary of additional commands used . . . . . . . . . . . . . . . . . . . . 197
9.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.2 Identifying the gain of a linear system . . . . . . . . . . . . . . . . . . . . . . 201
10.2.1 Linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.2.2 Natural frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.2.3 Estimator of the gain function . . . . . . . . . . . . . . . . . . . . . . 202
10.3 Spectrum of an AR(p) process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
10.4 Simulated single mode of vibration system . . . . . . . . . . . . . . . . . . 203
10.5 Ocean-going tugboat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.6 Non-linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
10.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
11 Multivariate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.2 Spurious regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.3 Tests for unit roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
11.4 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.4.2 Exchange rate series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.5 Bivariate and multivariate white noise . . . . . . . . . . . . . . . . . . . . . 219
11.6 Vector autoregressive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
11.6.1 VAR model fitted to US economic series . . . . . . . . . . . . . . 222
11.7 Summary of R commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
11.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
12 State Space Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
12.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
12.2 Linear state space models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
12.2.1 Dynamic linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
12.2.2 Filtering* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
12.2.3 Prediction* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
12.2.4 Smoothing* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
12.3 Fitting to simulated univariate time series . . . . . . . . . . . . . . . . . . 234
12.3.1 Random walk plus noise model . . . . . . . . . . . . . . . . . . . . . . 234
12.3.2 Regression model with time-varying coefficients . . . . . . . 236
12.4 Fitting to univariate time series . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
12.5 Bivariate time series – river salinity . . . . . . . . . . . . . . . . . . . . . . . . 239
12.6 Estimating the variance matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 242
12.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
12.8 Summary of additional commands used . . . . . . . . . . . . . . . . . . . . 244
12.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-6-3 18:49:00

333058.pdf
大小:(5.75 MB)

 马上下载

Finally, the book is uploaded.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-8-30 09:00:42
Great , hey, I love your style   :)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-8-30 09:18:24
谢谢楼主的分享。

1# dwl001
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群