黃河泉 发表于 2018-9-14 18:15 
你真的应该先看看 help xthreg,而不是自己在那边猜!
xthreg lnfdi population lntrade law cpi lnefi lnat gdpdist rgdpimf fdigdp education exchange year,rx( cdwvs2 ) qx( cdwvs2
> ) thnum(2) grid(300) bs(1000 1000) trim(0.05 0.05)
Estimating the threshold parameters: 1st ...... 2nd ...... Done
Boostrap for single threshold
.................................................. + 50
.................................................. + 100
.................................................. + 150
.................................................. + 200
.................................................. + 250
.................................................. + 300
.................................................. + 350
.................................................. + 400
.................................................. + 450
.................................................. + 500
.................................................. + 550
.................................................. + 600
.................................................. + 650
.................................................. + 700
.................................................. + 750
.................................................. + 800
.................................................. + 850
.................................................. + 900
.................................................. + 950
.................................................. + 1000
Boostrap for double threshold model:
.................................................. + 50
.................................................. + 100
.................................................. + 150
.................................................. + 200
.................................................. + 250
.................................................. + 300
.................................................. + 350
.................................................. + 400
.................................................. + 450
.................................................. + 500
.................................................. + 550
.................................................. + 600
.................................................. + 650
.................................................. + 700
.................................................. + 750
.................................................. + 800
.................................................. + 850
.................................................. + 900
.................................................. + 950
.................................................. + 1000
Threshold estimator (level = 95):
-----------------------------------------------------
model | Threshold Lower Upper
-----------+-----------------------------------------
Th-1 | 1.6914 1.0071 1.6920
Th-21 |
1.6914 1.6907 1.6920
Th-22 |
1.0069 1.0066 1.0071
-----------------------------------------------------
Threshold effect test (bootstrap = 1000 1000):
-------------------------------------------------------------------------------
Threshold | RSS MSE Fstat Prob Crit10 Crit5 Crit1
-----------+-------------------------------------------------------------------
Single | 88.6008 0.0965 53.73
0.1710 61.6644 71.4453 97.6546
Double | 84.2864 0.0918 46.99
0.3460 76.5776 93.6963 128.0396
-------------------------------------------------------------------------------
Fixed-effects (within) regression Number of obs = 936
Group variable: id Number of groups = 52
R-sq: within = 0.6816 Obs per group: min = 18
between = 0.3625 avg = 18.0
overall = 0.3738 max = 18
F(15,869) = 124.01
corr(u_i, Xb) = -0.6170 Prob > F = 0.0000
-------------------------------------------------------------------------------
lnfdi | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
population | .3964475 .3630686 1.09 0.275 -.3161463 1.109041
lntrade | .4122533 .0482359 8.55 0.000 .3175807 .5069258
law | -.0072731 .094837 -0.08 0.939 -.1934093 .1788632
cpi | -.119438 .1196484 -1.00 0.318 -.3542716 .1153956
lnefi | .6809293 .2757723 2.47 0.014 .1396717 1.222187
lnat | .0396763 .0283515 1.40 0.162 -.015969 .0953217
gdpdist | .9881093 .1441279 6.86 0.000 .7052297 1.270989
rgdpimf | -.014898 .0035307 -4.22 0.000 -.0218278 -.0079682
fdigdp | .0064531 .0117018 0.55 0.581 -.016514 .0294203
education | -.4249096 .1240178 -3.43 0.001 -.668319 -.1815002
exchange | -.1462711 .0501567 -2.92 0.004 -.2447135 -.0478286
year | .0004018 .0054804 0.07 0.942 -.0103545 .0111582
|
_cat#c.cdwvs2 |
0 | -.5149353 .9264309 -0.56
0.578 -2.333239 1.303368
1 | -1.518868 .909904 -1.67
0.095 -3.304734 .2669983
2 | -.9680437 .8970526 -1.08
0.281 -2.728687 .7925992
|
_cons | -.7215523 3.046898 -0.24 0.813 -6.701691 5.258587
--------------+----------------------------------------------------------------
sigma_u | 1.8855638
sigma_e | .31251615
rho | .9732642 (fraction of variance due to u_i)
-------------------------------------------------------------------------------
F test that all u_i=0: F(51, 869) = 123.09 Prob > F = 0.0000
黄老师,真的是特别不好意思,前几天我还问过你关于门槛的问题,但是我看了些资料,可能是因为英文不好吧,看的有些糊涂,我今天又用xthreg命令做了一次结果,是这样子的,我想问看这个门槛结果是不是主要看我标红的那些数字就可以了?我先做了单门槛,对应的P值小于0.1所以拒绝,然后做了双门槛,就是这样,至于三门槛,我看结果不如双门槛更加强烈拒绝原假设,所以这里列了双门槛结果,这个P值是bootstrap举重1000次的得到的P值吗,还有我看一些文献提到了bootstrap的LM值,我不知道到这个值是什么意思,麻烦老师说道一下~