全部版块 我的主页
论坛 休闲区 十二区 灌水吧
993 0
2016-09-14
[size=13.3333px]In this paper, we derive a general asymptotic implied volatility atthe first-order for any stochastic volatility model using the heat kernel expansionon a Riemann manifold endowed with an Abelian connection. This formula isparticularly useful for the calibration procedure. As an application, we obtain anasymptotic smile for a SABR model with a mean-reversion term, called λ-SABR,corresponding in our geometric framework to the Poincar ́e hyperbolic plane.When the λ-SABR model degenerates into the SABR-model, we show that ourasymptotic implied volatility is a better approximation than the classical Hagan-al expression [19]. Furthermore, in order to show the strength of this geometricframework, we give an exact solution of the SABR model with β = 0 or 1. In anext paper, we will show how our method can be applied in other contexts suchas the derivation of an asymptotic implied volatility for a Libor market modelwith a stochastic volatility ([23]).
0504317v2.pdf
大小:(415.04 KB)

只需: 10 个论坛币  马上下载


                                       
                                
                        
               
                                       
                                
                        
               

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群