全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版)
2349 11
2016-11-08
An Introduction to Special Functions

Authors: Carlo Viola

cover.jpg

Presents material which connects the elementary theory of analytic functions of one complex variable with the theory of some of the most important special functions

Focuses especially on the Euler gamma function, the Gauss hypergeometric function, and the Kummer confluent hypergeometric function

Assumes only limited prior knowledge, to the level gained from a basic course on analytic functions

The subjects treated in this book have been especially chosen to represent a bridge connecting the content of a first course on the elementary theory of analytic functions with a rigorous treatment of some of the most important special functions: the Euler gamma function, the Gauss hypergeometric function, and the Kummer confluent hypergeometric function. Such special functions are indispensable tools in "higher calculus" and are frequently encountered in almost all branches of pure and applied mathematics. The only knowledge assumed on the part of the reader is an understanding of basic concepts to the level of an elementary course covering the residue theorem, Cauchy's integral formula, the Taylor and Laurent series expansions, poles and essential singularities, branch points, etc. The book addresses the needs of advanced undergraduate and graduate students in mathematics or physics.

Table of contents

Front Matter

Picard’s Theorems

The Weierstrass Factorization Theorem

Entire Functions of Finite Order

Bernoulli Numbers and Polynomials

Summation Formulae

The Euler Gamma-Function

Linear Differential Equations

Hypergeometric Functions

Back Matter

原版 PDF + EPUB:

本帖隐藏的内容

原版 PDF:
An Introduction to Special Functions.pdf
大小:(1.62 MB)

只需: 15 个论坛币  马上下载



EPUB:
An Introduction to Special Functions.epub
大小:(3.48 MB)

只需: 15 个论坛币  马上下载




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-11-8 08:46:03
kankan
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-8 08:58:41
An Introduction to Special Functions
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-8 09:25:12
感谢分享好资源!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-8 11:20:06
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-8 12:00:27
Introduction to Special Functions
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群