全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版)
1425 7
2016-11-23
Quadratic Residues and Non-Residues
Selected Topics

Authors: Steve Wright

cover.jpg

Illustrates how the study of quadratic residues led directly to the development of fundamental methods in elementary, algebraic, and analytic number theory

Presents in detail seven proofs of the Law of Quadratic Reciprocity, with an emphasis on the six proofs which Gauss published

Discusses in some depth the historical development of the study of quadratic residues and non-residues

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory.

The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

Table of contents

Front Matter
Pages i-xiii

Introduction: Solving the General Quadratic Congruence Modulo a Prime
Pages 1-8

Basic Facts
Pages 9-19

Gauss’ Theorema Aureum: The Law of Quadratic Reciprocity
Pages 21-77

Four Interesting Applications of Quadratic Reciprocity
Pages 79-118

The Zeta Function of an Algebraic Number Field and Some Applications
Pages 119-150

Elementary Proofs
Pages 151-160

Dirichlet L-Functions and the Distribution of Quadratic Residues
Pages 161-201

Dirichlet’s Class-Number Formula
Pages 203-226

Quadratic Residues and Non-Residues in Arithmetic Progression
Pages 227-271

Are Quadratic Residues Randomly Distributed?
Pages 273-283

Back Matter
Pages 285-294

原版 PDF + EPUB:

本帖隐藏的内容

原版 PDF:
Quadratic Residues and Non-Residues_Selected Topics.pdf
大小:(3.44 MB)

只需: 20 个论坛币  马上下载



EPUB:
Quadratic Residues and Non-Residues_Selected Topics.epub
大小:(2.97 MB)

只需: 20 个论坛币  马上下载



PDF + EPUB 压缩包:
Quadratic Residues and Non-Residues_Selected Topics.zip
大小:(4.72 MB)

只需: 40 个论坛币  马上下载

本附件包括:

  • Quadratic Residues and Non-Residues_Selected Topics.pdf
  • Quadratic Residues and Non-Residues_Selected Topics.epub




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-11-23 13:28:09
提示: 作者被禁止或删除 内容自动屏蔽
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-23 13:33:13
提示: 作者被禁止或删除 内容自动屏蔽
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-23 19:31:28
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-23 21:55:43
Quadratic Residues and Non-Residues (2016)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2016-11-24 00:36:30
thanks for sharing
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群