全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 量化投资
1680 1
2016-11-25
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.

Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.

With this handbook, you’ll learn how to use:

IPython and Jupyter: provide computational environments for data scientists using Python
NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python
Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python
Matplotlib: includes capabilities for a flexible range of data visualizations in Python
Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
附件列表
09462948nzk38e1e1dd81s.jpg

原图尺寸 82.67 KB

09462948nzk38e1e1dd81s.jpg

Python Data Science Handbook_Essential Tools for Working with Data.rar

大小:5.8 MB

只需: 2 个论坛币  马上下载

epub格式

本附件包括:

  • Python Data Science Handbook_Essential Tools for Working with Data 2016.epub

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2016-11-28 14:44:46
谢谢分享啊!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群