全部版块 我的主页
论坛 休闲区 十二区 休闲灌水 IDEAS/RePEc 排名
355 0
2004-12-01
英文文献:The Forecasting Power of the Yield Curve, a Supervised Factor Model Approach
英文文献作者:Lorenzo Boldrini,Eric Hillebrand
英文文献摘要:
We study the forecast power of the yield curve for macroeconomic time series, such as consumer price index, personal consumption expenditures, producer price index, real disposable income, unemployment rate, and industrial production. We employ a state-space model in which the forecasting objective is included in the state vector. This amounts to an augmented dynamic factor model in which the factors (level, slope, and curvature of the yield curve) are supervised for the macroeconomic forecast target. In other words, the factors are informed about the dynamics of the forecast objective. The factor loadings have the Nelson and Siegel (1987) structure and we consider one forecast target at a time. We compare the forecasting performance of our specification to benchmark models such as principal components regression, partial least squares, and ARMA(p,q) processes. We use the yield curve data from G¨urkaynak, Sack, and Wright (2006) and Diebold and Li (2006) and macroeconomic data from FRED. We compare the models by means of the conditional predictive ability test of Giacomini and White (2006). We find that the yield curve has more forecast power for real variables compared to inflation measures and that supervising the factor extraction for the forecast target can improve forecast performance.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群