全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
2977 4
2017-01-16
\[Y = \beta_{0} + \beta_{1} x_{1} + \epsilon\]
\[Y = \beta_{0} + \beta_{1} x_{2} + \epsilon\]

对上面的两个公式分别使用ordered probit 模型进行估计,我想检验\[x_{1}\]的系数是否等于\[x_{2}\],在stata里面可以操作吗?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-1-17 05:58:19
试试像这样
sysuse auto
sureg (price = mpg) (price = weight)
test [price]mpg=[2price]weight
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-1-17 08:36:34
看suest的manual里面的例子解释比较详细

下面是suest的help,看最后的例子,模仿其做法
Title

    [R] suest -- Seemingly unrelated estimation


Syntax

        suest namelist [, options]

    where namelist is a list of one or more names under which estimation results were stored via
        estimates store.  Wildcards may be used.  * and _all refer to all stored results.  A
        single period (.) may be used to refer to the last estimation results, even if they have
        not (yet) been stored.

    options               Description
    ---------------------------------------------------------------------------------------------
    SE/Robust
      svy                 survey data estimation
      vce(vcetype)        vcetype may be robust or cluster clustvar

    Reporting
      level(#)            set confidence level; default is level(95)
      dir                 display a table describing the models
      eform(string)       report exponentiated coefficients and label as string
      display_options     control column formats, row spacing, line width, display of omitted
                            variables and base and empty cells, and factor-variable labeling

      coeflegend          display legend instead of statistics
    ---------------------------------------------------------------------------------------------
    coeflegend does not appear in the dialog box.


Menu

    Statistics > Postestimation > Tests > Seemingly unrelated estimation


Description

    suest is a postestimation command; see estcom and postest.

    suest combines the estimation results -- parameter estimates and associated (co)variance
    matrices -- stored under namelist into one parameter vector and simultaneous (co)variance
    matrix of the sandwich/robust type.  This (co)variance matrix is appropriate even if the
    estimates were obtained on the same or on overlapping data.

    Typical applications of suest are tests for intramodel and cross-model hypotheses using test
    or testnl, for example, a generalized Hausman specification test.  lincom and nlcom may be
    used after suest to estimate linear combinations and nonlinear functions of coefficients.
    suest may also be used to adjust a standard VCE for clustering or survey design effects.

    Different estimators are allowed, for example, a regress model and a probit model; the only
    requirement is that predict produce equation-level scores with the score option after an
    estimation command.  The models may be estimated on different samples, due either to explicit
    if or in selection or to missing values.  If weights are applied, the same weights (type and
    values) should be applied to all models in namelist.  The estimators should be estimated
    without vce(robust) or vce(cluster clustvar) options.  suest returns the robust VCE, allows
    the vce(cluster clustvar) option, and automatically works with results from the svy prefix
    command (only for vce(linearized)).  See example 7 in [SVY] svy postestimation for an example
    using suest with svy: ologit.

    Because suest posts its results like a proper estimation command, its results can be stored
    via estimates store.  Moreover, like other estimation commands, suest typed without arguments
    replays the results.


Options

        +-----------+
    ----+ SE/Robust +----------------------------------------------------------------------------

    svy specifies that estimation results should be modified to reflect the survey design effects
        according to the svyset specifications; see [SVY] svyset.

        The svy option is implied when suest encounters survey estimation results from the svy
        prefix. Poststratification is allowed only with survey estimation results from the svy
        prefix.

    vce(vcetype) specifies the type of standard error reported, which includes types that are
        robust to some kinds of misspecification (robust) and that allow for intragroup
        correlation (cluster clustvar); see [R] vce_option.

        The vce() option may not be combined with the svy option or estimation results from the
        svy prefix.

        +-----------+
    ----+ Reporting +----------------------------------------------------------------------------

    level(#) specifies the confidence level, as a percentage, for confidence intervals of the
        coefficients; see [R] level.

    dir displays a table describing the models in namelist just like estimates dir namelist.

    eform(string) displays the coefficient table in exponentiated form:  for each coefficient,
        exp(b) rather than b is displayed, and standard errors and confidence intervals are
        transformed.  string is the table header that will be displayed above the transformed
        coefficients and must be 11 characters or fewer, for example, eform("Odds ratio").

    display_options:  noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
        fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch;
        see [R] estimation options.

    The following option is available with suest but is not shown in the dialog box:

    coeflegend; see [R] estimation options.


Remarks

    Remarks are presented under the following headings:

        Using suest
        Using suest with survey data
        Remarks on specific commands


Using suest

    If you plan to use suest, you must take precautions when fitting the original models.  These
    restrictions are relaxed when using survey data; see Using suest with survey data below.

        1.  suest works with estimation commands that allow predict to generate equation-level
            score variables when supplied with the score (or scores) option.  For example,
            equation-level score variables are generated after running mlogit by typing

                . predict sc*, scores

        2.  Estimation should take place without the vce(robust) or vce(cluster clustvar)
            options.  suest always computes the robust estimator of the (co)variance, and suest
            has a vce(cluster clustvar) option.

            The within-model covariance matrices computed by suest are identical to those
            obtained by specifying a vce(robust) or vce(cluster clustvar) option during
            estimation.  suest, however, also estimates the between-model covariances of
            parameter estimates.

        3.  Finally, the estimation results to be combined should be stored by estimates store;
            see [R] estimates store.

    After estimating and storing a series of estimation results, you are ready to combine the
    estimation results with suest,

        . suest name1 [name2 ...] [, vce(cluster clustvar)]

    and you can subsequently use postestimation commands, such as test, to test hypotheses.  Here
    an important issue is how suest assigns names to the equations.  If you specify one model
    name, the original equation names are left unchanged; otherwise, suest constructs new
    equation names.  The coefficients of a single-equation model (such as logit and poisson) that
    was estimate stored under name X are collected under equation X.  With a multiequation model
    stored under name X, suest prefixes X_ to an original equation name eq, forming equation name
    X_eq.

    Technical note: in rare circumstances, suest may have to truncate equation names to 32
    characters. When equation names are not unique because of truncation, suest numbers the
    equations within models, using equations named X_#.


Using suest with survey data

    suest can be used to obtain the variance estimates for a series of estimators that used the
    svy prefix.  To use suest for this purpose, perform the following steps:

        1.  Be sure to set the survey design characteristics correctly using svyset.  Do not use
            the vce() option to change the default variance estimator from the linearized
            variance estimator.  vce(brr) and vce(jackknife) are not supported by suest.

        2.  Fit the model or models by using the svy prefix command, optionally including the
            subpopulation with the subpop() option.

        3.  Store the estimation results with estimates store name.

        4.  Use suest with name.


Remarks on specific commands

    Some estimation commands store or name their results in a slightly nonstandard way, mostly
    for historical reasons.  suest provides "fixes" in these cases.

    regress does not include its ancillary parameter, the residual variance, in its coefficient
        vector and (co)variance matrix.  Moreover, while the score option is allowed with predict
        after regress, a score variable is generated for the mean but not for the variance
        parameter.  suest contains special code that assigns the equation name mean to the
        coefficients for the mean, adds the equation lnvar for the log variance, and computes the
        appropriate score variables.


Example 1: A Hausman test

    . webuse sysdsn4
    . mlogit insure age male
    . estimates store m1, title(all three insurance forms)

    . quietly mlogit insure age male if insure != "Uninsure":insure
    . estimates store m2, title(insure != "Uninsure":insure)

    . quietly mlogit insure age male if insure != "Prepaid":insure
    . estimates store m3, title(insure != "Prepaid":insure)

    . hausman m2 m1, alleqs constant
    . hausman m3 m1, alleqs constant


Example 2: Do coefficients vary between groups? ("Chow test")

    . webuse income
    . regress inc edu exp if male
    . estimates store Male

    . regress inc edu exp if !male
    . estimates store Female

    . suest Male Female
    . test [Male_mean = Female_mean]


Example 3: A nonlinear Hausman-like test

    . webuse income
    . probit promo edu exp
    . estimates store Promo

    . regress inc edu exp
    . estimates store Inc

    . suest Promo Inc
    . testnl [Promo_promo]edu/[Promo_promo]exp = [Inc_mean]edu/[Inc_mean]exp


Example 4: Using suest with survey data, the svy prefix


    . webuse nhanes2f
    . svyset psuid [pw=finalwgt], strata(stratid)
    . svy: ologit health female black age age2
    . estimates store H5


    . gen health3 = clip(health,2,4)
    . svy: ologit health3 female black age age2
    . estimates store H3


    . suest H5 H3
    . test [H5_health=H3_health3]
    . test ([H5_cut2]_cons=[H3_cut1]_cons) ([H5_cut3]_cons=[H3_cut2]_cons)


Example 5: Using suest with survey data, the svy option

    . webuse nhanes2f, clear
    . svyset psuid [pw=finalwgt], strata(stratid)
    . ologit health female black age age2 [iw=finalwgt]
    . estimates store H5

    . gen health3 = clip(health,2,4)
    . ologit health3 female black age age2 [iw=finalwgt]
    . estimates store H3

    . suest H5 H3, svy
    . test [H5_health=H3_health3]
    . test ([H5_cut2]_cons=[H3_cut1]_cons) ([H5_cut3]_cons=[H3_cut2]_cons)


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-1-18 19:07:30
谢谢我的蓝色版主,我打算用交互虚拟变量进行检验,你的材料我会好好学习的
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-1-18 19:08:27
夏目贵志 发表于 2017-1-17 05:58
试试像这样
sysuse auto
sureg (price = mpg) (price = weight)
谢谢啊,完美解决
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群