全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 金融工程(数量金融)与金融衍生品
4608 3
2009-08-06

Reinforcement Learning:

An Introduction


Richard S. Sutton and Andrew G. Barto

A Bradford Book

The MIT Press
Cambridge, Massachusetts
London, England


In memory of A. Harry Klopf


附件列表

书.doc

大小:5.97 MB

只需: 100 个论坛币  马上下载

Reinforcement Learning: An Introduction 书的WORD版

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-8-6 18:12:36
Contents
    Preface
    Series Forward
    Summary of Notation


  I. The Problem
    1. Introduction
      1.1 Reinforcement Learning
      1.2 Examples
      1.3 Elements of Reinforcement Learning
      1.4 An Extended Example: Tic-Tac-Toe
      1.5 Summary
      1.6 History of Reinforcement Learning
      1.7 Bibliographical Remarks
    2. Evaluative Feedback
      2.1 An -Armed Bandit Problem
      2.2 Action-Value Methods
      2.3 Softmax Action Selection
      2.4 Evaluation Versus Instruction
      2.5 Incremental Implementation
      2.6 Tracking a Nonstationary Problem
      2.7 Optimistic Initial Values
      2.8 Reinforcement Comparison
      2.9 Pursuit Methods
      2.10 Associative Search
      2.11 Conclusions
      2.12 Bibliographical and Historical Remarks
    3. The Reinforcement Learning Problem
      3.1 The Agent-Environment Interface
      3.2 Goals and Rewards
      3.3 Returns
      3.4 Unified Notation for Episodic and Continuing Tasks
      3.5 The Markov Property
      3.6 Markov Decision Processes
      3.7 Value Functions
      3.8 Optimal Value Functions
      3.9 Optimality and Approximation
      3.10 Summary
      3.11 Bibliographical and Historical Remarks


  II. Elementary Solution Methods
    4. Dynamic Programming
      4.1 Policy Evaluation
      4.2 Policy Improvement
      4.3 Policy Iteration
      4.4 Value Iteration
      4.5 Asynchronous Dynamic Programming
      4.6 Generalized Policy Iteration
      4.7 Efficiency of Dynamic Programming
      4.8 Summary
      4.9 Bibliographical and Historical Remarks
    5. Monte Carlo Methods
      5.1 Monte Carlo Policy Evaluation
      5.2 Monte Carlo Estimation of Action Values
      5.3 Monte Carlo Control
      5.4 On-Policy Monte Carlo Control
      5.5 Evaluating One Policy While Following Another
      5.6 Off-Policy Monte Carlo Control
      5.7 Incremental Implementation
      5.8 Summary
      5.9 Bibliographical and Historical Remarks
    6. Temporal-Difference Learning
      6.1 TD Prediction
      6.2 Advantages of TD Prediction Methods
      6.3 Optimality of TD(0)
      6.4 Sarsa: On-Policy TD Control
      6.5 Q-Learning: Off-Policy TD Control
      6.6 Actor-Critic Methods
      6.7 R-Learning for Undiscounted Continuing Tasks
      6.8 Games, Afterstates, and Other Special Cases
      6.9 Summary
      6.10 Bibliographical and Historical Remarks


  III. A Unified View
    7. Eligibility Traces
      7.1 -Step TD Prediction
      7.2 The Forward View of TD()
      7.3 The Backward View of TD()
      7.4 Equivalence of Forward and Backward Views
      7.5 Sarsa()
      7.6 Q()
      7.7 Eligibility Traces for Actor-Critic Methods
      7.8 Replacing Traces
      7.9 Implementation Issues
      7.10 Variable  
      7.11 Conclusions
      7.12 Bibliographical and Historical Remarks
    8. Generalization and Function Approximation
      8.1 Value Prediction with Function Approximation
      8.2 Gradient-Descent Methods
      8.3 Linear Methods
        8.3.1 Coarse Coding
        8.3.2 Tile Coding
        8.3.3 Radial Basis Functions
        8.3.4 Kanerva Coding
      8.4 Control with Function Approximation
      8.5 Off-Policy Bootstrapping
      8.6 Should We Bootstrap?
      8.7 Summary
      8.8 Bibliographical and Historical Remarks
    9. Planning and Learning
      9.1 Models and Planning
      9.2 Integrating Planning, Acting, and Learning
      9.3 When the Model Is Wrong
      9.4 Prioritized Sweeping
      9.5 Full vs. Sample Backups
      9.6 Trajectory Sampling
      9.7 Heuristic Search
      9.8 Summary
      9.9 Bibliographical and Historical Remarks
    10. Dimensions of Reinforcement Learning
      10.1 The Unified View
      10.2 Other Frontier Dimensions
    11. Case Studies
      11.1 TD-Gammon
      11.2 Samuel's Checkers Player
      11.3 The Acrobot
      11.4 Elevator Dispatching
      11.5 Dynamic Channel Allocation
      11.6 Job-Shop Scheduling
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-7-12 14:43:53
想钱想疯了把!有人买吗?网上都有!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-5-16 09:53:38
  想钱想疯了的楼主
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群