全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
8054 28
2005-10-23

2005最新出版

Preface xiii

1 Scatterplots and Regression 1


1.1 Scatterplots, 1


1.2 Mean Functions, 9


1.3 Variance Functions, 11


1.4 Summary Graph, 11


1.5 Tools for Looking at Scatterplots, 12


1.5.1 Size, 13


1.5.2 Transformations, 14


1.5.3 Smoothers for the Mean Function, 14


1.6 Scatterplot Matrices, 15
Problems, 17




2 Simple Linear Regression 19


2.1 Ordinary Least Squares Estimation, 21


2.2 Least Squares Criterion, 23


2.3 Estimating σ 2,25


2.4 Properties of Least Squares Estimates, 26


2.5 Estimated Variances, 27


2.6 Comparing Models: The Analysis of Variance, 28


2.6.1 The F -Test for Regression, 30


2.6.2 Interpreting p-values, 31


2.6.3 Power of Tests, 31


2.7 The Coefcient of Determination, R2,31


2.8 Condence Intervals and Tests, 32


2.8.1 The Intercept, 32


2.8.2 Slope, 33


2.8.3 Prediction, 34


2.8.4 Fitted Values, 35


2.9 The Residuals, 36
Problems, 38




3 Multiple Regression 47


3.1 Adding a Term to a Simple Linear Regression Model, 47


3.1.1 Explaining Variability, 49


3.1.2 Added-Variable Plots, 49


3.2 The Multiple Linear Regression Model, 50


3.3 Terms and Predictors, 51


3.4 Ordinary Least Squares, 54


3.4.1 Data and Matrix Notation, 54


3.4.2 Variance-Covariance Matrix of e,56


3.4.3 Ordinary Least Squares Estimators, 56


3.4.4 Properties of the Estimates, 57


3.4.5 Simple Regression in Matrix Terms, 58


3.5 The Analysis of Variance, 61


3.5.1 The Coefcient of Determination, 62


3.5.2 Hypotheses Concerning One of the Terms, 62


3.5.3 Relationship to the t-Statistic, 63


3.5.4 t-Tests and Added-Variable Plots, 63


3.5.5 Other Tests of Hypotheses, 64


3.5.6 Sequential Analysis of Variance Tables, 64


3.6 Predictions and Fitted Values, 65
Problems, 65




4 Drawing Conclusions 69

4.1 Understanding Parameter Estimates, 69


4.1.1 Rate of Change, 69


4.1.2 Signs of Estimates, 70


4.1.3 Interpretation Depends on Other Terms in the Mean Function, 70


4.1.4 Rank Decient and Over-Parameterized Mean
Functions, 73




4.1.5 Tests, 74


4.1.6 Dropping Terms, 74


4.1.7 Logarithms, 76


4.2 Experimentation Versus Observation, 77 4.3 Sampling from a Normal Population, 80


4.4 More on R2,81


4.4.1 Simple Linear Regression and R2,83


4.4.2 Multiple Linear Regression, 84


4.4.3 Regression through the Origin, 84


4.5 Missing Data, 84


4.5.1 Missing at Random, 84


4.5.2 Alternatives, 85


4.6 Computationally Intensive Methods, 87


4.6.1 Regression Inference without Normality, 87


4.6.2 Nonlinear Functions of Parameters, 89


4.6.3 Predictors Measured with Error, 90
Problems, 92




5 Weights, Lack of Fit, and More 96


5.1 Weighted Least Squares, 96


5.1.1 Applications of Weighted Least Squares, 98


5.1.2 Additional Comments, 99


5.2 Testing for Lack of Fit, Variance Known, 100


5.3 Testing for Lack of Fit, Variance Unknown, 102


5.4 General F Testing, 105


5.4.1 Non-null Distributions, 107


5.4.2 Additional Comments, 108


5.5 Joint Condence Regions, 108
Problems, 110




6 Polynomials and Factors 115


6.1 Polynomial Regression, 115


6.1.1 Polynomials with Several Predictors, 117


6.1.2 Using the Delta Method to Estimate a Minimum or a Maximum, 120


6.1.3 Fractional Polynomials, 122


6.2 Factors, 122


6.2.1 No Other Predictors, 123


6.2.2 Adding a Predictor: Comparing Regression Lines, 126


6.2.3 Additional Comments, 129


6.3 Many Factors, 130


6.4 Partial One-Dimensional Mean Functions, 131


6.5 Random Coefcient Models, 134
Problems, 137




7 Transformations 147

7.1 Transformations and Scatterplots, 147


7.1.1 Power Transformations, 148


7.1.2 Transforming Only the Predictor Variable, 150


7.1.3 Transforming the Response Only, 152


7.1.4 The Box and Cox Method, 153


7.2 Transformations and Scatterplot Matrices, 153


7.2.1 The 1D Estimation Result and Linearly Related Predictors, 156


7.2.2 Automatic Choice of Transformation of Predictors, 157


7.3 Transforming the Response, 159


7.4 Transformations of Nonpositive Variables, 160
Problems, 161




8 Regression Diagnostics: Residuals 167


8.1 The Residuals, 167


8.1.1 Difference Between eˆand e, 168


8.1.2 The Hat Matrix, 169


8.1.3 Residuals and the Hat Matrix with Weights, 170


8.1.4 The Residuals When the Model Is Correct, 171


8.1.5 The Residuals When the Model Is Not Correct, 171


8.1.6 Fuel Consumption Data, 173


8.2 Testing for Curvature, 176


8.3 Nonconstant Variance, 177


8.3.1 Variance Stabilizing Transformations, 179


8.3.2 A Diagnostic for Nonconstant Variance, 180


8.3.3 Additional Comments, 185


8.4 Graphs for Model Assessment, 185


8.4.1 Checking Mean Functions, 186


8.4.2 Checking Variance Functions, 189
Problems, 191




9 Outliers and Inuence 194


9.1 Outliers, 194


9.1.1 An Outlier Test, 194


9.1.2 Weighted Least Squares, 196


9.1.3 Signicance Levels for the Outlier Test, 196


9.1.4 Additional Comments, 197


9.2 Inuence of Cases, 198


9.2.1 Cooks Distance, 198 9.2.2 Magnitude of Di , 199


9.2.3 Computing Di , 200


9.2.4 Other Measures of Inuence, 203


9.3 Normality Assumption, 204
Problems, 206




10 Variable Selection 211

10.1 The Active Terms, 211


10.1.1 Collinearity, 214


10.1.2 Collinearity and Variances, 216


10.2 Variable Selection, 217


10.2.1 Information Criteria, 217


10.2.2 Computationally Intensive Criteria, 220


10.2.3 Using Subject-Matter Knowledge, 220


10.3 Computational Methods, 221


10.3.1 Subset Selection Overstates Signicance, 225


10.4 Windmills, 226


10.4.1 Six Mean Functions, 226


10.4.2 A Computationally Intensive Approach, 228
Problems, 230




11 Nonlinear Regression 233

11.1 Estimation for Nonlinear Mean Functions, 234


11.2 Inference Assuming Large Samples, 237


11.3 Bootstrap Inference, 244


11.4 References, 248
Problems, 248




12 Logistic Regression 251

12.1 Binomial Regression, 253


12.1.1 Mean Functions for Binomial Regression, 254


12.2 Fitting Logistic Regression, 255


12.2.1 One-Predictor Example, 255


12.2.2 Many Terms, 256


12.2.3 Deviance, 260


12.2.4 Goodness-of-Fit Tests, 261


12.3 Binomial Random Variables, 263


12.3.1 Maximum Likelihood Estimation, 263


12.3.2 The Log-Likelihood for Logistic Regression, 264


12.4 Generalized Linear Models, 265
Problems, 266




Appendix 270

A.1 Web Site, 270


A.2 Means and Variances of Random Variables, 270


A.2.1 E Notation, 270


A.2.2 Var Notation, 271


A.2.3 Cov Notation, 271


A.2.4 Conditional Moments, 272


A.3 Least Squares for Simple Regression, 273


A.4 Means and Variances of Least Squares Estimates, 273


A.5 Estimating E(Y |X) Using a Smoother, 275


A.6 A Brief Introduction to Matrices and Vectors, 278


A.6.1 Addition and Subtraction, 279


A.6.2 Multiplication by a Scalar, 280


A.6.3 Matrix Multiplication, 280


A.6.4 Transpose of a Matrix, 281


A.6.5 Inverse of a Matrix, 281


A.6.6 Orthogonality, 282


A.6.7 Linear Dependence and Rank of a Matrix, 283


A.7 Random Vectors, 283


A.8 Least Squares Using Matrices, 284


A.8.1 Properties of Estimates, 285


A.8.2 The Residual Sum of Squares, 285


A.8.3 Estimate of Variance, 286


A.9 The QR Factorization, 286


A.10 Maximum Likelihood Estimates, 287


A.11 The Box-Cox Method for Transformations, 289


A.11.1 Univariate Case, 289


A.11.2 Multivariate Case, 290


A.12 Case Deletion in Linear Regression, 291


References 293

Author Index 301

Subject Index 305



[此贴子已经被作者于2006-2-24 8:28:06编辑过]

附件列表

40671.rar

大小:3.91 MB

 马上下载

[下载]Weisberg Applied Linear Regression 第三版 (2005)

本附件包括:

  • Weisberg - Applied Linear Regression 2005.pdf

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2005-10-23 01:33:00

[此贴子已经被作者于2006-2-24 8:28:49编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-10-23 01:48:00

无法解压,密码是否有误.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-10-23 01:54:00
请试用键盘输入
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-10-23 16:16:00
很好,谢谢
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2005-10-23 17:18:00
谢谢,挺清晰的
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群