Pattern Recognition and Machine Learning
by Christopher M. Bishop
Publisher: Springer 2006
Number Of Pages: 750
Contents:
1 Introduction
2 Probability Distributions
3 Linear Models for Regression
4 Linear Models for Classification
5 Neural Networks
6 Kernel Methods
7 Sparse Kernel Machines
8 Graphical Models
9 Mixture Models and EM
10 Approximate Inference
11 Sampling Methods
12 Continuous Latent Variables
13 Sequential Data
14 Combining Models
首次上传资料,希望为论坛做一点自己的贡献。
应该已经有人发过收费版的,不好意思了。
个人觉得可以作为一些技术的综述来读