全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 数据分析与数据挖掘
1194 0
2017-06-14

Book Description
Data Science is booming thanks to R and Python, but Java brings the robustness, convenience, and ability to scale critical to today’s data science applications. With this practical book, Java software engineers looking to add data science skills will take a logical journey through the data science pipeline. Author Michael Brzustowicz explains the basic math theory behind each step of the data science process, as well as how to apply these concepts with Java.

You’ll learn the critical roles that data IO, linear algebra, statistics, data operations, learning and prediction, and Hadoop MapReduce play in the process. Throughout this book, you’ll find code examples you can use in your applications.

Examine methods for obtaining, cleaning, and arranging data into its purest form
Understand the matrix structure that your data should take
Learn basic concepts for testing the origin and validity of data
Transform your data into stable and usable numerical values
Understand supervised and unsupervised learning algorithms, and methods for evaluating their success
Get up and running with MapReduce, using customized components suitable for data science algorithms
Contents
Chapter 1. Data I/O
Chapter 2. Linear Algebra
Chapter 3. Statistics
Chapter 4. Data Operations
Chapter 5. Learning and Prediction
Chapter 6. Hadoop MapReduce

Cover:

Data Science with Java: Practical Methods for Scientists and Engineers

Download:


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群