阅读原文:http://suo.im/181JOb
相当于加了一个开关,站在40日均线上,就执行羊驼策略,否则,就空仓。
源码:
import random
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import scipy.stats as stats
import math
# 设置股票池,本程序中为所有沪深300的股票
stocks = get_index_stocks('000300.XSHG')
#求出股票池中有多少股票
num=len(stocks)
set_universe(stocks)
#设置benchmark,默认为沪深300
#set_benchmark('510050.XSHG')
#设置回测条件
set_commission(PerTrade(buy_cost=0.0008, sell_cost=0.0015, min_cost=5))
set_slippage(FixedSlippage(0))
#设置初始买入多少只股票
num_of_stocks=10
#设置每次更新时替换多少只股票
num_of_change=3
#设置计算几日收益率
period=2
#用一个列表来保存每天持有的股票代码
stockshold=[]
#判断参数输入是否符合条件,如果不符合,则重置为默认值
if num_of_stocks>num:
log.info('too large num_of_stocks')
num_of_stocks=10
elif num_of_change>num_of_stocks:
log.info('too large num_of_change')
num_of_change=1
num_MA=40
security = '000300.XSHG'
#预处理数据,将没有数据的股票剔除,同时加入收益率
#构成一个列索引为股票名,收益率一行的索引为
#'return'的dataframe,并返回这个dataframe
def process():
#取出每只股票period天的收盘价格
stocks_info=history(period,'1d','close')
#去除信息不全的数据
stocks_info.dropna(axis=0,how='any',thresh=None)
#取出昨天和period天之前的收盘价,计算收益率
a1=list(stocks_info.iloc[0])
a2=list(stocks_info.iloc[period-1])
a1=np.array(a1)
a2=np.array(a2)
#用一个dataframe来保存所有股票的收益率信息
stocks_return=DataFrame(a2/a1,columns=['return'],index=stocks_info.columns)
stocks_info=stocks_info.T
#把收益率的数据加到相应的列
stocks_info=pd.concat([stocks_info,stocks_return],axis=1)
#将股票信息按照收益率从大到小来存储
stocks_info=stocks_info.sort(columns=['return'],ascending=[False])
#返回处理好的dataframe
return stocks_info#股票入池
def BuyStocks(stocks_info,cash):
#计算现在持有的股票数
current_num=len(stockshold)
stocks_info=stocks_info.T
#将已持有的股票从股票池中剔除
for i in range(0,current_num):
if stockshold in stocks_info.columns:
del stocks_info[stockshold]
stocks_info=stocks_info.T
#计算在每只股票上可以支付的现金
cash=cash/num_of_stocks-current_num
for i in range(0,num_of_stocks-current_num):
#取得股票当前的价格
current_price=stocks_info['current_price']
#判断是否有价格数据
if math.isnan(current_price)==False:
#计算可以每只股票可以购买的数量
num_of_shares=int(cash/current_price)
if num_of_shares>0:
order(stocks_info.index,+num_of_shares)
log.info('buying %s' %(stocks_info.index))
#将购买的股票代码加到stockhold中
stockshold.append(stocks_info.index)
#股票出池
见原文
阅读原文:http://suo.im/181JOb