概率与统计推断(英文版)WILEY
作者:
Robert Bartoszynski
Magdalena Niewiadomska-Bugaj
CONTENTS
X
Preface
1
1 Experiments, Sample Spaces, and Events
1
1.1 Introduction
2
1.2 Sample Space
9
1.3 Algebra of Events
16
1.4 Infinite Operations on Events
25
Probability
25
2.1 Introduction
25
2.2 Probability as a Frequency
26
2.3 Axioms of Probability
31
2.4 Consequences of the Axioms
36
2.5 Classical Probability
37
2.6 Necessity of the Axioms*
42
2.7 Subjective Probability*
V
vi CONTENTS
3 Counting 47
3.1 Introduction 47
3.2 Product Sets, Orderings, and Permutations 47
3.3 Binomial Coefficients 55
3.4 Extension of Newton’s Formula 68
3.5 hlultinomial Coefficients 69
4 Conditional Probability: Independence 73
4.1 Introduction 73
4.2 Conditional Probability 74
4.3 Partitions; Total Probability Formula 80
4.4 Bayes’ Formula 87
4.5 Independence 92
4.6 Exchangeability; Conditional Independence 99
5 Markov Chains* 103
5.1 Introduction and Basic Definitions 103
5.2 Definition of a Markov Chain 106
5.3 n-Step Transition Probabilities 111
5.4 The Ergodic Theorem 114
5.5 Absorption Probabilities 122
6 Random Variables: Univariate Case 125
6.1 Introduction 125
6.2 Distributions of Random Variables 126
6.3 Discrete and Continuous Random Variables 139
6.4 Functions of Random Variables 150
6.5 Survival and Hazard Functions 157
7 Random Variables: Multivariate Case 161
7.1 Bivariate Distributions 161
7.2 Marginal Distributions; Independence 168
7.3 Conditional Distributions 180
7.4 Bivariate Transformations 187
7.5 Multidimensional Distributions 196
8 Expectation 203
8.1 Introduction 203
8.2 Expected Value 204
CONTENTS vii
8.3 Expectation as an Integral* 212
8.4 Properties of Expectation 220
8.5 Moments 228
8.6 Variance 236
8.7 Conditional Expectation 248
8.8 Inequalities 252
9 Selected Families of Distributions 257
9.1 Bernoulli Trials and Related Distributions 257
9.2 Hypergeometric Distribution 2 70
9.3 Poisson Distribution and Poisson Process 2 76
9.4 Exponential, Gamma and Related Distributions 290
9.5 Normal Distribution 296
9.6 Beta Distribution 306
10 Random Samples 311
10.1 Statistics and their Distributions 311
10.2 Distributions Related to Normal 313
10.3 Order Statistics 319
10.4 Generating Random Samples 325
10.5 Convergence 330
10.6 Central Limit Theorem 342
11 Introduction to Statistical Inference 351
11.1 Overview 351
11.2 Descriptive Statistics 353
11.3 Basic Model 358
11.4 Bayesian Statistics 360
11.5 Sampling 360
11.6 Measurement Scales 367
12 Estimation 373
12.1 Introduction 373
12.2 Consistency 378
12.3 Loss, Risk, and Admissibility 381
12.4 Efficiency 386
12.5 Methods of Obtaining Estimators 394
12.6 Sufficiency 424
12.7 Interval Estimation 440
viii CONTENTS
13 Testing Statistical Hypotheses 455
13.1 Introduction 455
13.2 Intuitive Background 460
13.3 Most Powerful Tests 469
13.4 Uniformly Most Powerful Tests 48 1
13.5 Unbiased Tests 487
13.6 Generalized Likelihood Ratio Tests 491
13.7 Conditional Tests 498
13.8 Tests and Confidence Intervals 501
13.9 Review of Tests for Normal Distributions 502
13.10 Monte Carlo, Bootstrap, and Permutation Tests 512
14 Linear Models 517
14.1 Introduction 517
14.2 Regression of the First and Second Kind 519
14.3 Distributional Assumptions 525
14.4 Linear Regression in the Normal Case 528
14.5 Testing Linearity 535
14.6 Prediction 538
14.7 Inverse Regression 540
14.8 BLUE 542
14.9 Regression Toward the Mean 545
14.10 Analysis of Variance 546
14.11 One-way Layout 547
14.12 Two-way Layout 550
14.13 ANOVA Models with Interaction 553
14.14 Further Extensions 557
15 Rank Methods 559
15.1 Introduction 559
15.2 Glivenko-Cantelli Theorem 560
15.3 Kolmogorov-Smirnov Tests 564
15.4 One-Sample Rank Tests 571
15.5 Two-Sample Rank Tests 578
15.6 Kruskal-Wallis Test 582
16 Analysis of Categorical Data 585
16.1 Introduction 585
16.2 Chi-square Tests 587
CONTENTS ix
16.3 Homogeneity and Independence 593
16.4 Consistency and Power 599
16.5 2x2 Contingency Tables 604
16.6 r x c Contingency Tables 612
Statistical Tables 617
Bibliography 629
Answers to Odd-Numbered Problems 634
Index 642
附件列表