全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 量化投资
6016 57
2017-07-10
nhwi067cbhggxrLr4Clnlc56eMF8Hy44.jpg
English | 6 July 2017 | ASIN: B073RLXQW3 | 206 Pages | AZW3 | 5.09 MB
"This would be an excellent book for undergraduate, graduate and beyond.The style of writing is easy to read and the author does a good job of adding humor in places. The integration of basic programming in R with the data that is collected for any experiment provides a powerful platform for analysis of data. having the understanding of data analysis that this book offers will really help researchers examine their data and consider its value from multiple perspectives “ and this applies to people who have small AND large data sets alike! This book also helps people use a free and basic software system for processing and plotting simple to complex functions." Michelle Pantoya, Texas Tech University

Measurements of quantities that vary in                                                                                                                                                                                                                                                                                                                                                                                                                                                 a continuous fashion, e.g., the pressure of a gas, cannot be measured exactly and there will always be some uncertainty with these measured values, so it is vital for researchers to be able to quantify this data. Uncertainty Analysis of Experimental Data with R covers methods for evaluation of uncertainties in experimental data, as well as predictions made using these data, with implementation in R.

The books discusses both basic and more complex methods including linear regression, nonlinear regression, and kernel smoothing curve fits, as well as Taylor Series, Monte Carlo and Bayesian approaches.

Features:

1. Extensive use of modern open source software (R).

2. Many code examples are provided.

3. The uncertainty analyses conform to accepted professional standards (ASME).

4. The book is self-contained and includes all necessary material including chapters on statistics and programming in R.

Benjamin D. Shaw is a professor in the Mechanical and Aerospace Engineering Department at the University of California, Davis. His research interests are primarily in experimental and theoretical aspects of combustion. Along with other courses, he has taught undergraduate and graduate courses on engineering experimentation and uncertainty analysis. He has published widely in archival journals and became an ASME Fellow in 2003.

本帖隐藏的内容

Uncertainty Analysis of Experimental Data with R.rar
大小:(3.69 MB)

只需: 10 个论坛币  马上下载

本附件包括:

  • Uncertainty Analysis of Experimental Data with R.azw3



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-7-10 16:17:17
看看,谢谢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-7-10 17:05:00
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-7-10 17:07:17
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-7-10 18:32:46
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-7-10 20:27:57
thanks for sharing
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群