全部版块 我的主页
论坛 休闲区 十二区 休闲灌水 IDEAS/RePEc 排名
459 0
2004-12-12
英文文献:A mixed-frequency Bayesian vector autoregression with a steady-state prior-一种具有稳态先验的混合频率贝叶斯向量自回归
英文文献作者:Sebastian Ankargren,M?ns Unosson,Yukai Yang
英文文献摘要:
We consider a Bayesian vector autoregressive (VAR) model allowing for an explicit prior specification for the included variables' "steady states" (unconditional means) for data measured at different frequencies. We propose a Gibbs sampler to sample from the posterior distribution derived from a normal prior for the steady state and a normal-inverse-Wishart prior for the dynamics and error covariance. Moreover, we suggest a numerical algorithm for computing the marginal data density that is useful for finding appropriate values for the necessary hyperparameters. We evaluate the proposed model by applying it to a real-time data set where we forecast Swedish GDP growth. The results indicate that the inclusion of high-frequency data improves the accuracy of low-frequency forecasts, in particular for shorter time horizons. The proposed model thus facilitates a simple and helpful way of incorporating information about the long run through the steady-state prior as well as about the near future through its ability to cope with mixed frequencies of the data.

我们考虑了一个贝叶斯向量自回归(VAR)模型,该模型允许对不同频率测量的数据的包含变量的“稳定状态”(无条件的方法)进行明确的预先说明。我们提出了一个吉布斯采样器,用于从稳态的正态先验和动态和误差协方差的正态反wishart先验导出的后验分布进行采样。此外,我们提出了一种计算边缘数据密度的数值算法,这对于寻找必要的超参数的适当值是有用的。我们通过将该模型应用于预测瑞典GDP增长的实时数据集来评估该模型。结果表明,高频数据的加入提高了低频预测的准确性,特别是在较短的时间范围内。因此,所提出的模型促进了一种简单和有益的方式,通过稳定状态之前的长期运行以及通过处理数据的混合频率的能力,关于近期的未来的信息。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群