全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 数据分析与数据挖掘
1065 4
2017-08-24
这个好像也没有
e.jpg
Contents
Preface ix
Acknowledgments xi
1. Introduction 1
Data Mining Objectives 1
Introduction to VisMiner 2
The Data Mining Process 3
Initial Data Exploration 4
Dataset Preparation 5
Algorithm Selection and Application 8
Model Evaluation 8
Summary 9
2. Initial Data Exploration and Dataset Preparation
Using VisMiner 11
The Rationale for Visualizations 11
Tutorial – Using VisMiner 13
Initializing VisMiner 13
Initializing the Slave Computers 14
Opening a Dataset 16
Viewing Summary Statistics 16
Exercise 2.1 17
The Correlation Matrix 18
Exercise 2.2 20
The Histogram 21
The Scatter Plot 23
Exercise 2.3 28
The Parallel Coordinate Plot 28
Exercise 2.4 33
Extracting Sub-populations Using the Parallel Coordinate Plot 37
Exercise 2.5 41
The Table Viewer 42
The Boundary Data Viewer 43
Exercise 2.6 47
The Boundary Data Viewer with Temporal Data 47
Exercise 2.7 49
Summary 49
3. Advanced Topics in Initial Exploration and Dataset
Preparation Using VisMiner 51
Missing Values 51
Missing Values – An Example 53
Exploration Using the Location Plot 56
Exercise 3.1 61
Dataset Preparation – Creating Computed Columns 61
Exercise 3.2 63
Aggregating Data for Observation Reduction 63
Exercise 3.3 65
Combining Datasets 66
Exercise 3.4 67
Outliers and Data Validation 68
Range Checks 69
Fixed Range Outliers 69
Distribution Based Outliers 70
Computed Checks 72
Exercise 3.5 74
Feasibility and Consistency Checks 74
Data Correction Outside of VisMiner 75
Distribution Consistency 76
Pattern Checks 77
A Pattern Check of Experimental Data 80
Exercise 3.6 81
Summary 82
4. Prediction Algorithms for Data Mining 83
Decision Trees 84
Stopping the Splitting Process 86
A Decision Tree Example 87
Using Decision Trees 89
vi Contents
Decision Tree Advantages 89
Limitations 90
Artificial Neural Networks 90
Overfitting the Model 93
Moving Beyond Local Optima 94
ANN Advantages and Limitations 96
Support Vector Machines 97
Data Transformations 99
Moving Beyond Two-dimensional Predictors 100
SVM Advantages and Limitations 100
Summary 101
5. Classification Models in VisMiner 103
Dataset Preparation 103
Tutorial – Building and Evaluating Classification Models 104
Model Evaluation 104
Exercise 5.1 109
Prediction Likelihoods 109
Classification Model Performance 113
Interpreting the ROC Curve 119
Classification Ensembles 124
Model Application 125
Summary 127
Exercise 5.2 128
Exercise 5.3 128
6. Regression Analysis 131
The Regression Model 131
Correlation and Causation 132
Algorithms for Regression Analysis 133
Assessing Regression Model Performance 133
Model Validity 135
Looking Beyond R2 135
Polynomial Regression 137
Artificial Neural Networks for Regression Analysis 137
Dataset Preparation 137
Tutorial 138
A Regression Model for Home Appraisal 139
Modeling with the Right Set of Observations 139
Exercise 6.1 145
ANN Modeling 145
The Advantage of ANN Regression 148
Contents vii
Top-Down Attribute Selection 149
Issues in Model Interpretation 150
Model Validation 152
Model Application 153
Summary 154
7. Cluster Analysis 155
Introduction 155
Algorithms for Cluster Analysis 158
Issues with K-Means Clustering Process 158
Hierarchical Clustering 159
Measures of Cluster and Clustering Quality 159
Silhouette Coefficient 161
Correlation Coefficient 161
Self-Organizing Maps (SOM) 161
Self-Organizing Maps in VisMiner 163
Choosing the Grid Dimensions 168
Advantages of a 3-D Grid 169
Extracting Subsets from a Clustering 170
Summary 173
Appendix A VisMiner Reference by Task 175
Appendix B VisMiner Task/Tool Matrix 187
Appendix C IP Address Look-up 189
Index 191

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-8-24 07:43:21
Thanks for sharing!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-8-24 07:43:47
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-8-24 08:00:53
谢谢楼主分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-8-24 13:04:34
谢谢分享~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群