全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
899 0
2017-09-15
摘要:对等(P2P)覆盖网络作为一种典型的分布式系统日益受到人们的重视.P2P应用遍及文件共享、流媒体、即时通信等多个领域,P2P应用所产生的流量占据了互联网流量的60%以上.为了更好地管理和控制P2P流量,有必要对P2P流量识别模型进行深入的研究.提出一种基于小波支持向量机的机器学习模型(ML-WSVM)来识别已知和未知的P2P流量,ML-WSVM是通过满足小波框架和Mercer定理的小波基函数替换支持向量机核函数的方法,实现小波与支持向量机的结合.该模型充分利用了小波的多尺度特性与支持向量机在分类方面的优势.然后,提出基于损失函数的串行最小化算法来优化求解ML-WSVM的最优分类面.最后,理论分析和实验结果表明该方法大大提高了对P2P网络流量的识别精度和识别效率,尤其是对加密报文的识别.

原文链接:http://www.cqvip.com/QK/94913X/201112/40227818.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群