全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
649 0
2017-09-15
摘要:为了克服传统测谎方法没有考虑到相同刺激下受试者思维状态变化的缺点,提出了基于P300和机器学习的测谎方法.该方法使用典型的3刺激测谎范式,首先记录30名随机划分的撒谎者和无辜者的12导脑电(EEG)信号,使用独立成分分析方法(ICA)分解由探针刺激产生的脑电信号,利用在Pz电极上分布强度大的独立分量重建Pz波形,将每名受试者的的若干个Pz波形进行平均,提取两步降噪后的每个Pz波形的时域和小波特征.最后,使用分类器区分P300和非P300波形,进一步计算出个体测谎诊断率.实验结果表明,支持向量机(SVM)适合于说谎意识状态的分类,提出的方法可以有效地改进单次刺激记录上的信噪比,提高P300成分的识别率,进而提高测谎诊断率.

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=35570393

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群