摘要:在新开发的系统被部署应用之前,恶意代码检测成为非常重要的一个环节,同时也是很大的一个挑战。本文中,采用机器学习,发现系统的实现结构,包含设计中的正常功能以及隐藏存在的恶意行为。通常情况下,带有机器学习的出版的系统被认为是完全确定的。但是实际的系统经常是不确定的,而且流行的算法并不适用。本文设计了针对不完全确定系统的广义并且高效的机器学习算法,来检验恶意代码的植入。并进一步延伸
机器学习的结果,从一个近似的模型开始,比已知的算法更有效的学习一个实现的结构。实验表明本文的算法更有效地检测恶意植入行为。
原文链接:http://www.cqvip.com/QK/96469X/201310/47571042.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)