摘要:磁盘是保存数据的重要载体,提高磁盘的可靠性和数据可用性具有重要意义。现代磁盘普遍支持SMART协议,用来监控磁盘的内部工作状态。采用机器学习方法,分析磁盘的SMART信息,实现对磁盘故障的预测。所采用的机器学习方法包括反向神经网络、决策树、支持向量机以及简单贝叶斯,并采用实际磁盘SMART数据进行验证与分析。基于上述数据,对不同
机器学习方法的有效性及其效果进行了对比。结果表明,决策树方法的预测率最好,支持向量机方法的误报率最低。
原文链接:http://www.cqvip.com/QK/94293X/201512/666942506.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)