全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
1016 0
2017-09-16
摘要:目的基于机器学习的3种算法建立诊断预测模型,比较3种模型对前列腺癌的诊断价值。方法选择2008~2014年在中国人民解放军总医院进行前列腺穿刺活检的患者956例(其中前列腺癌463例,前列腺增生493例),采用Logistic回归分析,筛选出预测因子(年龄、游离之前列腺特异抗原、游离之前列腺特异抗原百分比、前列腺体积和前列腺特异性抗原密度)。应用基于机器学习的BP神经网络、Logistic回归和随机森林算法构建诊断预测模型,比较3种模型对前列腺癌的预测准确性。结果 Logistic回归、BP神经网络和随机森林模型对前列腺癌的诊断能力比任一单项指标都高,3种模型的灵敏度分别为77.5%、77.4%、76.2%,特异度分别为74.8%、76.8%、76.9%,精确度分别为76%、77%、77%,受试者工作特征曲线下面积(AUC)分别为0.831、0.832、0.833,3种模型对前列腺癌的诊断能力没有显著性差异。结论上述结果验证了3种模型均具有较高的诊断有效性,可将模型纳入泌尿决策,协助临床医生对前列腺癌患者进行诊断和治疗,并减少不必要的活检。

原文链接:http://www.cqvip.com/QK/97351X/201604/668561963.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群