摘要:为了对具有基数小、波动大及随机性强等特点的微电网负荷进行准确预测,提出了一种基于改进的
机器学习算法。该算法包括基于蚁群算法的模型参数寻优和基于改进核函数极限学习机的预测模型2部分。首先,对蚁群算法信息素的作用方式进行了改进,并将训练误差用于计算蚁群个体的新增信息素,从而得到最优的模型参数。其次,采用基于加权离散距离的方法对训练数据进行筛选,留下相似度高的训练样本对核函数输出权重进行训练,从而减少计算量,提高预测精度。用某小区高层楼宇的电网历史负荷数据,在Matlab中对算法进行仿真验证,结果表明预测算法能较好地实现微电网的负荷预测。
原文链接:http://www.cqvip.com/QK/90214B/201603/669617700.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)