摘要:随着互联网的发展,电子商务已经成为一种新的商业活动模式。商品在电子商务平台的排名,直接决定了产品的销量。如何优化产品的排名,是所有电子商务公司关注的问题。从商品的文本信息角度出发,利用
机器学习方法来研究文本信息与产品排名之间的关系。从特征提取方法和分类算法两个角度进行了比较研究。首先比较了TFIDF和词频法(WF)两种特征提取方法,进一步又比较了朴素贝叶斯、支持向量机(SVM)以及随机森林(RF)三个分类算法。研究结果表明,在该文的数据集上进行文本分类排名分析,词频法结合随机森林取得了最好的分类效果。
原文链接:http://www.cqvip.com/QK/95939X/201611/87887489504849544949484954.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)