全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
491 0
2017-09-17
摘要:现实世界中广泛存在着很多不均衡的数据,其分类问题是机器学习领域的研究热点。为了提高不均衡数据的分类性能,提出一种基于核空间置信度的代价敏感支持向量机分类算法。通过注入类别错分代价机制,以不均衡数据评价指标作为目标函数,优化错分代价因子,提升少数类样本的识别率。计算类中所有样本在核空间下的类别置信度,从而确定样本对决策分类贡献的重要程度,降低噪音或孤立点对支持向量机的影响。通过大量UCI数据集的实验结果表明,与其他同类算法相比,该算法能更好地提高不均衡数据的分类性能。

原文链接:http://www.cqvip.com/QK/95200X/201510/666459918.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群