摘要:区域作为人类、自然、社会共同作用和互相影响的复杂系统,对区域进行生态量化建模与模拟仿真,是实现区域可持续发展战略的关键.传统机器学习方法对区域生态系统建模取得了一定的成果,但难以确定学习特征和实现时空模拟.深度学习不需事先确定训练特征,具有优异的特征学习能力,能够提高模型预测精度,因此利用深度学习进行建模具有显著优势.本文使用植被净初级生产力(NPP)、气溶胶光学厚度(AOD)和人口格网数据,充分利用深度学习的优点,采用最优深度
神经网络时空模拟,得到了河南省2007-2014年3 km分辨率的生态赤字空间分布图和河南省2015-2020年的生态赤字时间预测结果并进行分析,为区域生态的科学管理和建设供科学依据和参考.
原文链接:http://d.wanfangdata.com.cn/Periodical/dqxxkx201707008
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)