全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
715 0
2017-09-17
摘要:在电力系统负荷特性统计指标和气温日益积累大数据背景下,有效提取数据之间关联特征对电力系统规划和运行具有重大意义。为此,提出一种气温对负荷特性指标影响及其内在关联特征数据挖掘的方法。考虑气温季节特征进行分季度建模,首先通过物理关系和皮尔森相关系数获得气温和负荷特性指标任意两因素之间的相关性特征;然后在多变量时间序列平稳性检验基础上,对水平不平稳的同阶单整时间序列进行协整检验和向量误差修正(vector error correction, VEC)建模以获取其长期同步运动趋势及短期波动特性;进一步通过对变量差分化后的平稳时间序列的向量自回归(vector auto-regression,VAR)建模提取多因素变化量间的动态关系,结合格兰杰因果检验挖掘因素变化量之间的因果引导关系。针对华中某省级电网2006年至2010年负荷特性实际统计数据及相应气温数据的实例分析验证了文中方法的正确性和有效性,方法已在实际电网负荷特性统计分析中得到应用。

原文链接:http://www.cqvip.com/QK/90021X/201501/663395843.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群