摘要:为了提高风电场短期风速预测精度,提出将遗传算法和反向传播(BP)神经网络相结合的预测模型.采用自相关性分析找出对预测值影响最大的几个历史时刻风速,以历史时刻的风速、温度、湿度和气压作为BP神经网络预测模型的输入变量;利用遗传算法的全局搜索能力获得BP神经网络优化的初始权值和阈值;采用优化后的BP神经网络分别建立1、2、3h的短期风速预测模型.实验结果表明,该方法较BP
神经网络具有预测精度高、收敛谏席懊的优点.
原文链接:http://www.cqvip.com/QK/90076A/201205/42616765.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)