全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
1361 0
2017-09-20
摘要:为最大限度减少热误差对数控机床加工精度的影响,尝试结合灰色理论和人工神经网络各自对数据处理的优点,提出一种基于灰色理论预处理的神经网络机床热误差补偿模型。在一台处于实际加工状态的数控车床上进行试验,采用数字式温度传感器测量经过优化选取的对热误差有关键影响的机床构件和加工环境的温度数据,采用非接触式位移传感器获得机床加工热误差数据,在不断调整灰色模型数据序列长度及神经网络权值、阈值的基础上,最终建立热误差补偿模型。通过与传统灰色模型和神经网络进行对比分析及试验论证表明,该补偿模型具有对原始温度和热误差数据要求低、计算简便、预测精度高、鲁棒性强等优点,可用于各种复杂实际加工场合中的数控机床热误差实时补偿。

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=37885242

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群