摘要:激光诱导击穿光谱(LIBS)作为一种快速的化学组成分析技术,在冶金过程的原位、在线及远程分析方面展现了突出的应用前景和研究价值。利用神经网络建立定标模型,结合LIBS技术对不同品种钢中的Mn和Si组分进行定量分析,研究了不同输入方式对神经网络性能的影响,并与光谱分析中常用的内标法进行对比。结果表明,对于化学体系复杂的多基体钢的定量分析,神经网络定标法能够更充分利用光谱中的信息,有利于校正基体效应和谱线之间的干扰;但是,
神经网络的输入方式对网络性能具有重要影响,只有在合理选择输入方式下才能有效提高测量重复性和准确性。
原文链接:http://www.cqvip.com/Main/Detail.aspx?id=35393775
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)