全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
607 0
2017-09-20
摘要:针对产生回归轨迹的连续非线性动态系统,确定学习可实现未知闭环系统动态的局部准确逼近.基于确定学习理论,本文使用径向基函数(Radial basis function,RBF)神经网络为机器人任务空间跟踪控制设计了一种新的自适应神经网络控制算法,不仅实现了闭环系统所有信号的最终一致有界,而且在稳定的控制过程中,沿着回归跟踪轨迹实现了部分神经网络权值收敛到最优值以及未知闭环系统动态的局部准确逼近.学过的知识以时不变且空间分布的方式表达、以常值神经网络权值的方式存储,可以用来改进系统的控制性能,也可以应用到后续相同或相似的控制任务中,节约时间和能量.最后,用仿真说明了所设计控制算法的正确性和有效性.

原文链接:http://www.cqvip.com/QK/90250X/201306/46140683.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群